Skip to main content
Ch 17: Superposition
Chapter 17, Problem 17

A bass clarinet can be modeled as a 120-cm-long open-closed tube. A bass clarinet player starts playing in a 20° C room, but soon the air inside the clarinet warms to where the speed of sound is 352 m/s . Does the fundamental frequency increase or decrease? By how much?

Verified Solution

Video duration:
3m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Fundamental Frequency

The fundamental frequency is the lowest frequency at which a system, such as a musical instrument, vibrates. For an open-closed tube like a bass clarinet, the fundamental frequency is determined by the length of the tube and the speed of sound in the medium inside it. It can be calculated using the formula f = v / 4L, where f is the frequency, v is the speed of sound, and L is the length of the tube.
Recommended video:
Guided course
05:08
Circumference, Period, and Frequency in UCM

Speed of Sound

The speed of sound is the rate at which sound waves propagate through a medium. In air, this speed is influenced by temperature; as the temperature increases, the speed of sound also increases. In this scenario, the speed of sound in the bass clarinet rises to 352 m/s due to the warming of the air, which directly affects the frequency of the sound produced by the instrument.
Recommended video:
Guided course
05:17
Standing Sound Waves

Effect of Temperature on Sound

Temperature affects the density and elasticity of air, which in turn influences the speed of sound. As the temperature rises, air molecules move faster, allowing sound waves to travel more quickly. This increase in speed results in a higher fundamental frequency for the bass clarinet, meaning that the pitch of the sound produced will increase as the air inside warms up.
Recommended video:
Guided course
07:40
The Doppler Effect
Related Practice
Textbook Question
A flute player hears four beats per second when she compares her note to a 523 Hz tuning fork (the note C). She can match the frequency of the tuning fork by pulling out the 'tuning joint' to lengthen her flute slightly. What was her initial frequency?
361
views
Textbook Question
CALC You have two small, identical boxes that generate 440 Hz notes. While holding one, you drop the other from a 20-m-high balcony. How many beats will you hear before the falling box hits the ground? You can ignore air resistance.
346
views
Textbook Question
The fundamental frequency of an open-open tube is 1500 Hz when the tube is filled with 0°C helium. What is its frequency when filled with 0°C air?
516
views
Textbook Question
A 170-cm-long open-closed tube has a standing sound wave at 250 Hz on a day when the speed of sound is 340 m/s . How many pressure antinodes are there, and how far is each from the open end of the tube?
469
views
1
rank
Textbook Question
BIO Deep-sea divers often breathe a mixture of helium and oxygen to avoid getting the 'bends' from breathing high-pressure nitrogen. The helium has the side effect of making the divers' voices sound odd. Although your vocal tract can be roughly described as an open-closed tube, the way you hold your mouth and position your lips greatly affects the standing-wave frequencies of the vocal tract. This is what allows different vowels to sound different. The 'ee' sound is made by shaping your vocal tract to have standing-wave frequencies at, normally, 270 Hz and 2300 Hz. What will these frequencies be for a helium-oxygen mixture in which the speed of sound at body temperature is 750 m/s ? The speed of sound in air at body temperature is 350 m/s .
689
views
Textbook Question
A 280 Hz sound wave is directed into one end of the trombone slide seen in FIGURE P17.55. A microphone is placed at the other end to record the intensity of sound waves that are transmitted through the tube. The straight sides of the slide are 80 cm in length and 10 cm apart with a semicircular bend at the end. For what slide extensions s will the microphone detect a maximum of sound intensity?

606
views