Skip to main content
Ch.7 - Thermochemistry
Chapter 7, Problem 77

When 1.03 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 24.2 °C to 2931.4 °C. Find ΔErxn for the combustion of biphenyl in kJ>mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/°C.

Verified Solution

Video duration:
3m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Combustion Reaction

A combustion reaction is a chemical process in which a substance reacts rapidly with oxygen, producing heat and light. In this case, biphenyl (C12H10) combusts, releasing energy as it transforms into carbon dioxide and water. Understanding the stoichiometry of the reaction is essential for calculating the energy change associated with the combustion.
Recommended video:
Guided course
02:24
Combustion Apparatus

Calorimetry

Calorimetry is the science of measuring the heat of chemical reactions or physical changes. In this scenario, a bomb calorimeter is used to measure the heat released during the combustion of biphenyl. The temperature change observed in the calorimeter, along with its heat capacity, allows for the calculation of the energy change (ΔErxn) for the reaction.
Recommended video:
Guided course
00:50
Constant-Volume Calorimetry

Enthalpy Change (ΔErxn)

The enthalpy change (ΔErxn) for a reaction represents the amount of energy absorbed or released during the reaction per mole of reactant. It is calculated using the formula ΔErxn = -C × ΔT, where C is the heat capacity of the calorimeter and ΔT is the change in temperature. This value is crucial for understanding the energy dynamics of the combustion process.
Recommended video:
Guided course
02:34
Enthalpy of Formation
Related Practice
Textbook Question

A 2.85-g lead weight, initially at 10.3 °C, is submerged in 7.55 g of water at 52.3 °C in an insulated container. What is the final temperature of both substances at thermal equilibrium?

2970
views
4
rank
1
comments
Textbook Question

Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of substance A is 6.15 g and its initial temperature is 20.5 °C. The mass of substance B is 25.2 g and its initial temperature is 52.7 °C. The final temperature of both substances at thermal equilibrium is 46.7 °C. If the specific heat capacity of substance B is 1.17 J/g•°C, what is the specific heat capacity of substance A?

3164
views
1
rank
Textbook Question

Exactly 1.5 g of a fuel burns under conditions of constant pressure and then again under conditions of constant volume. In measurement A the reaction produces 25.9 kJ of heat, and in measurement B the reaction produces 23.3 kJ of heat. Which measurement (A or B) corresponds to conditions of constant pressure? Explain.

1447
views
Textbook Question

Zinc metal reacts with hydrochloric acid according to the balanced equation: Zn(s) + 2 HCl(aq) → ZnCl2(aq) + H2(g) When 0.103 g of Zn(s) is combined with enough HCl to make 50.0 mL of solution in a coffee-cup calorimeter, all of the zinc reacts, raising the temperature of the solution from 22.5 °C to 23.7 °C. Find ΔHrxn for this reaction as written. (Use 1.0 g/mL for the density of the solution and 4.18 J/g•°C as the specific heat capacity.)

27263
views
Textbook Question

Instant cold packs used to ice athletic injuries on the field contain ammonium nitrate and water separated by a thin plastic divider. When the divider is broken, the ammonium nitrate dissolves according to the endothermic reaction: NH4NO3(s) → NH4+(aq) + NO3 (aq) In order to measure the enthalpy change for this reaction, 1.25 g of NH4NO3 is dissolved in enough water to make 25.0 mL of solution. The initial temperature is 25.8 °C and the final temperature (after the solid dissolves) is 21.9 °C. Calculate the change in enthalpy for the reaction in kJ. (Use 1.0 g/mL as the density of the solution and 4.18 J/g•°C as the specific heat capacity.)

3188
views
1
comments
Textbook Question

For each generic reaction, determine the value of ΔH2 in terms of ΔH1.

a. A + B → 2 C ΔH1

2 C→ A + B ΔH2 = ?

337
views