Skip to main content
Ch.15 - Chemical Kinetics
Chapter 15, Problem 118a

Ethyl chloride vapor decomposes by the first-order reaction: C2H5Cl → C2H4 + HCl The activation energy is 249 kJ/mol, and the frequency factor is 1.6⨉1014 s-1. Find the value of the rate constant at 710 K.

Verified Solution

Video duration:
3m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

First-Order Reactions

First-order reactions are chemical reactions where the rate is directly proportional to the concentration of one reactant. This means that if the concentration of the reactant doubles, the rate of the reaction also doubles. The rate law for a first-order reaction can be expressed as rate = k[A], where k is the rate constant and [A] is the concentration of the reactant.
Recommended video:
Guided course
02:29
First-Order Reactions

Arrhenius Equation

The Arrhenius equation relates the rate constant of a reaction to the temperature and activation energy. It is expressed as k = A * e^(-Ea/RT), where k is the rate constant, A is the frequency factor, Ea is the activation energy, R is the universal gas constant, and T is the temperature in Kelvin. This equation shows how temperature influences reaction rates, with higher temperatures generally leading to increased rates.
Recommended video:
Guided course
01:20
Arrhenius Equation

Activation Energy

Activation energy (Ea) is the minimum energy required for a chemical reaction to occur. It represents the energy barrier that reactants must overcome to transform into products. A higher activation energy indicates that fewer molecules have sufficient energy to react at a given temperature, thus affecting the rate of the reaction. In the context of the Arrhenius equation, a higher Ea results in a smaller rate constant at lower temperatures.
Recommended video:
Guided course
02:02
Activity Series Chart