Skip to main content
Ch.6 - Thermochemistry
Chapter 6, Problem 113

The ΔH for the oxidation of sulfur in the gas phase to SO3 is –204 kJ/mol and for the oxidation of SO2 to SO3 is 89.5 kJ/mol. Find the enthalpy of formation of SO2 under these conditions.

Verified Solution

Video duration:
5m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Enthalpy Change (ΔH)

Enthalpy change (ΔH) is a measure of the heat content of a system at constant pressure. It indicates whether a reaction is exothermic (releases heat, ΔH < 0) or endothermic (absorbs heat, ΔH > 0). Understanding ΔH is crucial for calculating the energy changes associated with chemical reactions, such as the formation of compounds from their elements.
Recommended video:
Guided course
02:34
Enthalpy of Formation

Hess's Law

Hess's Law states that the total enthalpy change for a reaction is the sum of the enthalpy changes for the individual steps of the reaction, regardless of the pathway taken. This principle allows us to calculate the enthalpy of formation of a compound by using known enthalpy changes of related reactions, facilitating the determination of ΔH for complex reactions.
Recommended video:

Enthalpy of Formation

The enthalpy of formation (ΔH_f) is the change in enthalpy when one mole of a compound is formed from its elements in their standard states. It is a fundamental concept in thermodynamics and is used to calculate the energy changes in chemical reactions. Knowing the enthalpy of formation is essential for predicting the stability and reactivity of compounds.
Recommended video:
Guided course
02:34
Enthalpy of Formation
Related Practice
Textbook Question

A mixture of 2.0 mol of H2(g) and 1.0 mol of O2(g) is placed in a sealed evacuated container made of a perfect insulating material at 25 °C. The mixture is ignited with a spark and reacts to form liquid water. Determine the temperature of the water.

1634
views
Textbook Question

A 20.0-L volume of an ideal gas in a cylinder with a piston is at a pressure of 3.0 atm. Enough weight is suddenly removed from the piston to lower the external pressure to 1.5 atm. The gas then expands at constant temperature until its pressure is 1.5 atm. Find w.

2215
views
Textbook Question

When 10.00 g of phosphorus is burned in O2(g) to form P4O10(s), enough heat is generated to raise the temperature of 2950 g of water from 18.0 °C to 38.0 °C. Calculate the enthalpy of formation of P4O10(s) under these conditions.

2187
views
1
comments
Textbook Question

The ΔH°f of TiI3(s) is –328 kJ/mol and the ΔH ° for the reaction 2 Ti(s) + 3 I2(g) → 2 TiI3(s) is –839 kJ. Calculate the ΔH of sublimation of I2(s), which is a solid at 25 °C.

1682
views
Textbook Question

A gaseous fuel mixture contains 25.3% methane (CH4), 38.2% ethane (C2H6), and the rest propane (C3H8) by volume. When the fuel mixture contained in a 1.55 L tank, stored at 755 mmHg and 298 K, undergoes complete combustion, how much heat is emitted? (Assume that the water produced by the combustion is in the gaseous state.)

2922
views
Textbook Question

A gaseous fuel mixture stored at 745 mmHg and 298 K contains only methane (CH4) and propane (C3H8). When 11.7 L of this fuel mixture is burned, it produces 769 kJ of heat. What is the mole fraction of methane in the mixture? (Assume that the water produced by the combustion is in the gaseous state.)

1781
views