Skip to main content
Ch.6 - Thermochemistry
Chapter 6, Problem 102

Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO2(s) → CO2(g) ◀ When carbon dioxide sublimes, the gaseous CO2 is cold enough to cause water vapor in the air to condense, forming fog. When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly. The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough. Suppose that a small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The ΔH°f for CO2(s) is –427.4 kJ/mol.)

Verified Solution

Video duration:
5m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Sublimation

Sublimation is the phase transition in which a substance changes directly from a solid to a gas without passing through the liquid phase. In the case of dry ice (solid CO2), it sublimates at temperatures above -78.5 °C, releasing gas into the atmosphere. This process is endothermic, meaning it absorbs heat from the surroundings, which is why dry ice can create fog when it sublimes in warm water.
Recommended video:
Guided course
01:19
Sublimation Phase Change Example

Enthalpy of Formation

The enthalpy of formation (ΔH°f) is the change in enthalpy when one mole of a compound is formed from its elements in their standard states. For dry ice, the ΔH°f is -427.4 kJ/mol, indicating that the formation of solid CO2 from its gaseous state releases energy. This value is crucial for calculating the energy changes during the sublimation process and determining how much dry ice is needed to absorb heat from the water.
Recommended video:
Guided course
02:34
Enthalpy of Formation

Heat Transfer and Temperature Change

Heat transfer refers to the movement of thermal energy from a warmer object to a cooler one until thermal equilibrium is reached. In this scenario, the warm water at 85 °C transfers heat to the dry ice, causing it to sublime. The final temperature of the water (25 °C) is essential for calculating the total heat absorbed by the dry ice, which can be determined using the specific heat capacity of water and the mass of water involved.
Recommended video:
Guided course
03:48
Temperature vs Heat
Related Practice
Textbook Question

LP gas burns according to the exothermic reaction: C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g) ΔH°rxn = –2044 kJ What mass of LP gas is necessary to heat 1.5 L of water from room temperature (25.0 °C) to boiling (100.0 °C)? Assume that during heating, 15% of the heat emitted by the LP gas combustion goes to heat the water. The rest is lost as heat to the surroundings.

2175
views
1
rank
Textbook Question

Use standard enthalpies of formation to calculate the standard change in enthalpy for the melting of ice. (The ΔH°f for H2O(s) is –291.8 kJ/mol.)

1854
views
Textbook Question

Use standard enthalpies of formation to calculate the standard change in enthalpy for the melting of ice. (The ΔH°f for H2O(s) is –291.8 kJ/mol.) Use this value to calculate the mass of ice required to cool 355 mL of a beverage from room temperature (25.0 °C) to 0.0 °C. Assume that the specific heat capacity and density of the beverage are the same as those of water.

4255
views
1
rank
Textbook Question

A 25.5-g aluminum block is warmed to 65.4 °C and plunged into an insulated beaker containing 55.2 g water initially at 22.2 °C. The aluminum and the water are allowed to come to thermal equilibrium. Assuming that no heat is lost, what is the final temperature of the water and aluminum?

2494
views
1
rank
Textbook Question

If 50.0 mL of ethanol (density = 0.789 g/mL) initially at 7.0 °C is mixed with 50.0 mL of water (density = 1.0 g/mL) initially at 28.4 °C in an insulated beaker, and assuming that no heat is lost, what is the final temperature of the mixture?

3703
views
1
comments
Open Question
Calculate the caloric content of table sugar (sucrose, C12H22O11), given that the standard enthalpy of formation of sucrose is -2226.1 kJ/mol. For comparison, the standard enthalpy of formation of palmitic acid (C16H32O2), a dietary fat found in beef and butter, is -208 kJ/mol. Use H2O(l) in the balanced chemical equations, as the metabolism of these compounds produces liquid water.