Skip to main content
Ch.6 - Thermochemistry
Chapter 6, Problem 66

A 32.5-g iron rod, initially at 22.7 °C, is submerged into an unknown mass of water at 63.2 °C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 59.5 °C. What is the mass of the water?

Verified Solution

Video duration:
0m:0s
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Thermal Equilibrium

Thermal equilibrium occurs when two objects at different temperatures come into contact and exchange heat until they reach the same temperature. In this scenario, the iron rod and water exchange heat until they stabilize at a final temperature of 59.5 °C. Understanding this concept is crucial for applying the principle of conservation of energy in thermal systems.
Recommended video:
Guided course
02:35
Thermal Equilibrium

Specific Heat Capacity

Specific heat capacity is the amount of heat required to raise the temperature of one gram of a substance by one degree Celsius. Each material has a unique specific heat capacity, which influences how much heat it can absorb or release. In this problem, the specific heat capacities of iron and water will be used to calculate the heat transfer and ultimately determine the mass of the water.
Recommended video:
Guided course
02:19
Heat Capacity

Conservation of Energy

The principle of conservation of energy states that energy cannot be created or destroyed, only transformed from one form to another. In this context, the heat lost by the iron rod must equal the heat gained by the water. This relationship allows us to set up an equation to solve for the unknown mass of water based on the heat transfer between the two substances.
Recommended video:
Guided course
01:48
Law of Conservation of Mass
Related Practice
Textbook Question

The propane fuel (C3H8) used in gas barbeques burns according to the thermochemical equation: C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(g) ΔH°rxn = –2044 kJ If a pork roast must absorb 1.6×103 kJ to fully cook, and if only 10% of the heat produced by the barbeque is actually absorbed by the roast, what mass of CO2 is emitted into the atmosphere during the grilling of the pork roast?

6036
views
Textbook Question

Charcoal is primarily carbon. Determine the mass of CO2 produced by burning enough carbon (in the form of charcoal) to produce 5.00×102 kJ of heat. C(s) + O2(g) → CO2(g) ΔH°rxn = –393.5 kJ

3373
views
Textbook Question

A silver block, initially at 58.5 °C, is submerged into 100.0 g of water at 24.8 °C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 26.2 °C. What is the mass of the silver block?

2677
views
1
comments
Textbook Question

A 31.1-g wafer of pure gold, initially at 69.3 °C, is submerged into 64.2 g of water at 27.8 °C in an insulated container. What is the final temperature of both substances at thermal equilibrium?

4111
views
4
rank
2
comments
Textbook Question

A 2.85-g lead weight, initially at 10.3 °C, is submerged in 7.55 g of water at 52.3 °C in an insulated container. What is the final temperature of both substances at thermal equilibrium?

2970
views
4
rank
1
comments
Textbook Question

Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of substance A is 6.15 g and its initial temperature is 20.5 °C. The mass of substance B is 25.2 g and its initial temperature is 52.7 °C. The final temperature of both substances at thermal equilibrium is 46.7 °C. If the specific heat capacity of substance B is 1.17 J/g•°C, what is the specific heat capacity of substance A?

3164
views
1
rank