Balance each redox reaction occurring in acidic aqueous solution. a. K(s) + Cr3+(aq) → Cr(s) + K+(aq) b. Al(s) + Fe2+(aq) → Al3+(aq) + Fe(s)
Calculate E°cell for each balanced redox reaction and determine if the reaction is spontaneous as written. b. MnO2(aq) + 4 H+(aq) + Zn(s) → Mn2+(aq) + 2H2O(l) + Zn2+(aq) c. Cl2(g) + 2 F–(aq) → F2(g) + 2 Cl–(aq)


Verified Solution

Key Concepts
Standard Electrode Potential (Ec°ell)
Balancing Redox Reactions
Spontaneity of Reactions
Calculate E°cell for each balanced redox reaction and determine if the reaction is spontaneous as written. a. O2(g) + 2 H2O(l) + 4 Ag(s) → 4 OH–(aq) + 4 Ag+(aq) b. Br2(l) + 2 I–(aq) → 2 Br–(aq) + I2(s)
Use tabulated electrode potentials to calculate ∆G°rxn for each reaction at 25 °C. b. Br2(l) + 2 Cl–(aq) → 2 Br–(aq) + Cl2(g) c. MnO2(s) + 4 H+(aq) + Cu(s) → Mn2+(aq) + 2 H2O(l) + Cu2+(aq)
Sketch a voltaic cell for each redox reaction. Label the anode and cathode and indicate the half-reaction that occurs at each electrode and the species present in each solution. Also indicate the direction of electron flow.
b. 2 H+(aq) + Fe(s) → H2(g) + Fe2+(aq)
c. 2 NO3–(aq) + 8 H+(aq) + 3 Cu(s) → 2 NO(g) + 4 H2O(l) + 3 Cu2+(aq)
Write equations for the half-reactions that occur at the anode and cathode for the electrolysis of each aqueous solution. b. KCl(aq) c. CuBr2(aq)