Skip to main content
Ch.15 - Chemical Equilibrium
Chapter 15, Problem 78

A system at equilibrium contains I2(g) at a pressure of 0.21 atm and I(g) at a pressure of 0.23 atm. The system is then compressed to half its volume. Find the pressure of each gas when the system returns to equilibrium.

Verified step by step guidance
1
Identify the initial equilibrium condition and the equilibrium constant expression for the reaction: \( \text{I}_2(g) \rightleftharpoons 2\text{I}(g) \).
Calculate the initial equilibrium constant \( K_p \) using the initial pressures: \( K_p = \frac{(P_{\text{I}})^2}{P_{\text{I}_2}} \).
Determine the effect of compression on the system: halving the volume doubles the initial pressures of both gases.
Set up the new equilibrium expression using the doubled initial pressures and introduce a change variable \( x \) to account for the shift in equilibrium.
Solve the equilibrium expression for \( x \) to find the new equilibrium pressures of \( \text{I}_2(g) \) and \( \text{I}(g) \).
Related Practice
Textbook Question

Carbon monoxide replaces oxygen in oxygenated hemoglobin according to the reaction: HbO2(aq) + CO(aq) ⇌ HbCO(aq) + O2(aq) a. Use the reactions and associated equilibrium constants at body temperature given here to find the equilibrium constant for the reaction just shown. Hb(aq) + O2(aq) ⇌ HbO2(aq) Kc = 1.8 Hb(aq) + CO(aq) ⇌ HbCO(aq) Kc = 306

2555
views
Open Question
The reaction CO2(g) + C(s) ⇌ 2 CO(g) has Kp = 5.78 at 1200 K. a. Calculate the total pressure at equilibrium when 4.45 g of CO2 is introduced into a 10.0-L container and heated to 1200 K in the presence of 2.00 g of graphite. b. Repeat the calculation of part a in the presence of 0.50 g of graphite.
Textbook Question

At 650 K, the reaction MgCO3(s) ⇌ MgO(s) + CO2(g) has Kp = 0.026. A 10.0-L container at 650 K has 1.0 g of MgO(s) and CO2 at P = 0.0260 atm. The container is then compressed to a volume of 0.100 L. Find the mass of MgCO3 that is formed.

2253
views
Textbook Question

Consider the exothermic reaction: C2H4(g) + Cl2(g) ⇌ C2H4Cl2(g) If you were trying to maximize the amount of C2H4Cl2 produced, which tactic might you try? Assume that the reaction mixture reaches equilibrium. a. increasing the reaction volume b. removing C2H4Cl2 from the reaction mixture as it forms c. lowering the reaction temperature d. adding Cl2

2119
views
Textbook Question

Consider the endothermic reaction: C2H4(g) + I2(g) ⇌ C2H4I2(g) If you were trying to maximize the amount of C2H4I2 produced, which tactic might you try? Assume that the reaction mixture reaches equilibrium. a. decreasing the reaction volume b. removing I2 from the reaction mixture c. raising the reaction temperature d. adding C2H4 to the reaction mixture

1517
views
Textbook Question

Consider the reaction: H2(g) + I2(g) ⇌ 2 HI(g) A reaction mixture at equilibrium at 175 K contains PH2 = 0.958 atm, PI2 = 0.877 atm, and PHI = 0.020 atm. A second reaction mixture, also at 175 K, contains PH2 = PI2 = 0.621 atm and PHI = 0.101 atm. Is the second reaction at equilibrium? If not, what will be the partial pressure of HI when the reaction reaches equilibrium at 175 K?

2876
views