Skip to main content
Ch.13 - Solutions

Chapter 13, Problem 105

The Safe Drinking Water Act (SDWA) sets a limit for mercury—a toxin to the central nervous system—at 0.0020 ppm by mass. Water suppliers must periodically test their water to ensure that mercury levels do not exceed this limit. Suppose water becomes contaminated with mercury at twice the legal limit (0.0040 ppm). How much of this water would a person have to consume to ingest 50.0 mg of mercury?

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
2219
views
Was this helpful?

Video transcript

Hello everyone today. We are being given the following problem and asked us all for it. It says a concentration of four PPM or parts per million of chlorine is considered to be safe drinking water. How much water must a person consume in order to intake one g of chlorine first, you want to make note that PPM Parts per million is in units of g over 10 to the 6th g. We didn't take what we're given. We have one g of chlorine. And we want to use the molar mass ratio which between chlorine and water. We say that for every four g of chlorine we have g of H 20. We then must use how many grams per milliliter. There are in one g of water. We have one mil liter of water as well. And then finally we have to go from middle leaders to leaders and we can use the following conversion factor of one. Middle leader is equal to one times 10 to the negative third leaders of H 20. And once our units cancel, We note that we have a final answer of 250 leaders. I hope this helped. And until next time
Related Practice
Textbook Question

Sodium hydroxide (NaOH) has a lattice energy of -887 kJ>mol and a heat of hydration of -932 kJ>mol. How much solution could be heated to boiling by the heat evolved by the dissolution of 25.0 g of NaOH? (For the solution, assume a heat capacity of 4.0 J>g # °C, an initial temperature of 25.0 °C, a boiling point of 100.0 °C, and a density of 1.05 g>mL.)

1772
views
Textbook Question

A saturated solution forms when 0.0537 L of argon, at a pressure of 1.0 atm and temperature of 25 °C, is dissolved in 1.0 L of water. Calculate the Henry's law constant for argon.

1603
views
1
comments
Textbook Question

A gas has a Henry's law constant of 0.112 M>atm. What total volume of solution is needed to completely dissolve 1.65 L of the gas at a pressure of 725 torr and a temperature of 25 °C?

2238
views
3
rank
Textbook Question

Water softeners often replace calcium ions in hard water with sodium ions. Since sodium compounds are soluble, the presence of sodium ions in water does not cause the white, scaly residues caused by calcium ions. However, calcium is more beneficial to human health than sodium because calcium is a necessary part of the human diet, while high levels of sodium intake are linked to increases in blood pressure. The U.S. Food and Drug Administration (FDA) recommends that adults ingest less than 2.4 g of sodium per day. How many liters of softened water, containing a sodium concentration of 0.050% sodium by mass, would a person have to consume to exceed the FDA recommendation? (Assume a water density of 1.0 g>mL.)

1517
views
Textbook Question

An isotonic solution contains 0.90% NaCl mass to volume. Calculate the percent mass to volume for isotonic solutions containing each solute at 25 °C. Assume a van't Hoff factor of 1.9 for all ionic solutes. a. KCl

2015
views
Textbook Question

Magnesium citrate, Mg3(C6H5O7)2, belongs to a class of laxatives called hyperosmotics, which cause rapid emptying of the bowel. When a concentrated solution of magnesium citrate is consumed, it passes through the intestines, drawing water and promoting diarrhea, usually within 6 hours. Calculate the osmotic pressure of a magnesium citrate laxative solution containing 28.5 g of magnesium citrate in 235 mL of solution at 37 °C (approximate body temperature). Assume complete dissociation of the ionic compound.

1673
views