A photovoltaic cell contains a p–n junction that that converts solar light to electricity. An optimum semiconductor would have its band-gap energy matched to the wavelength of maximum solar intensity at the Earth's surface. (b) Which of the following semiconductors absorb at a wavelength matched with maximum solar intensity? CdTe with a band-gap energy of 145 kJ/mol or ZnSe with a band-gap energy of 248 kJ/mol.
![](/channels/images/assetPage/verifiedSolution.png)
![](/channels/images/assetPage/verifiedSolution.png)
Verified Solution
![](/channels/images/informationIcon.png)
Key Concepts
Band-Gap Energy
Photovoltaic Effect
Solar Spectrum
A photovoltaic cell contains a p–n junction that converts solar light to electricity. (a) Silicon semiconductors with a band-gap energy of 107 kJ/mol are commonly used to make photovoltaic cells. Calculate the wavelength that corresponds to the band-gap energy in silicon.
A photovoltaic cell contains a p–n junction that that converts solar light to electricity. An optimum semiconductor would have its band-gap energy matched to the wavelength of maximum solar intensity at the Earth's surface. (a) What is the color and approximate wavelength of maximum solar intensity at the Earth's surface? Refer to the figure for Problem 12.102.
Wide band-gap semiconductors have a band gap between 2 and 7 electron volts (eV), where 1 eV = 96.485 kJ/mol. The wide band-gap semiconductor GaN, used to construct the laser in Blu-ray DVD players, has a band gap of 3.44 eV. The material in the laser, GaxIn1-xN, has some indium substituted for gallium. (b) If the light from the device is blue, does partial substitution of indium for gallium increase or decrease the band gap of GaxIn1-xN compared to GaN?