Chapter 6, Problem 89d
Consider a transition in which the electron of a hydrogen atom is excited from n = 1 to n = . (d) How are the results of parts (b) and (c) related to the plot shown in Exercise 6.88?
Video transcript
In an experiment to study the photoelectric effect, a scientist measures the kinetic energy of ejected electrons as a function of the frequency of radiation hitting a metal surface. She obtains the following plot. The point labeled 'n0' corresponds to light with a wavelength of 542 nm. (a) What is the value of n0 in s - 1?
Consider a transition in which the electron of a hydrogen atom is excited from n = 1 to n = . (a) What is the end result of this transition?
Consider a transition in which the electron of a hydrogen atom is excited from n = 1 to n = . (b) What is the wavelength of light that must be absorbed to accomplish this process?
The human retina has three types of receptor cones, each sensitive to a different range of wavelengths of visible light, as shown in this figure (the colors are merely to differentiate the three curves from one another; they do not indicate the actual colors represented by each curve):
(c) Explain why the sky appears blue even though all wavelengths of solar light are scattered by the atmosphere.
The series of emission lines of the hydrogen atom for which nf = 3 is called the Paschen series. (a) Determine the region of the electromagnetic spectrum in which the lines of the Paschen series are observed.
The series of emission lines of the hydrogen atom for which nf = 3 is called the Paschen series. (b) Calculate the wavelengths of the first three lines in the Paschen series—those for which ni = 4, 5, and 6.