Skip to main content
Ch.15 - Chemical Equilibrium
Chapter 15, Problem 52

For the equilibrium Br2(𝑔) + Cl2(𝑔) β‡Œ 2 BrCl(𝑔) at 400 K, 𝐾𝑐 = 7.0. If 0.25 mol of Br2 and 0.55 mol of Cl2 are introduced into a 3.0-L container at 400 K, what will be the equilibrium concentrations of Br2, Cl2, and BrCl?

Verified Solution

Video duration:
10m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Chemical Equilibrium

Chemical equilibrium occurs when the rates of the forward and reverse reactions are equal, resulting in constant concentrations of reactants and products. In this state, the system is dynamic, meaning that reactions continue to occur, but there is no net change in concentration. Understanding this concept is crucial for analyzing how concentrations shift in response to changes in conditions, such as concentration or temperature.
Recommended video:
Guided course
04:21
Chemical Equilibrium Concepts

Equilibrium Constant (Kc)

The equilibrium constant (Kc) is a numerical value that expresses the ratio of the concentrations of products to reactants at equilibrium, each raised to the power of their coefficients in the balanced equation. For the reaction Br<sub>2</sub>(g) + Cl<sub>2</sub>(g) β‡Œ 2 BrCl(g), Kc = [BrCl]<sup>2</sup> / ([Br<sub>2</sub>][Cl<sub>2</sub>]). This constant provides insight into the extent of the reaction and helps predict the direction in which the reaction will shift to reach equilibrium.
Recommended video:
Guided course
03:20
Equilibrium Constant Expressions

Concentration Calculations

Concentration calculations involve determining the molarity of substances in a solution, which is defined as the number of moles of solute divided by the volume of the solution in liters. In this problem, the initial concentrations of Br<sub>2</sub> and Cl<sub>2</sub> must be calculated based on the given moles and the volume of the container. These initial concentrations are essential for applying the equilibrium expression and finding the equilibrium concentrations of all species involved.
Recommended video:
Guided course
07:35
Calculate Concentration of the Basic Form
Related Practice
Textbook Question

At 100Β°C, the equilibrium constant for the reaction COCl2(𝑔) β‡Œ CO(𝑔) + Cl2(𝑔) has the value 𝐾𝑐 = 2.19Γ—10βˆ’10. Are the following mixtures of COCl2, CO, and Cl2 at 100Β°C at equilibrium? If not, indicate the direction that the reaction must proceed to achieve equilibrium. (a) [COCl2] = 2.00Γ—10βˆ’3 𝑀, [CO] = 3.3Γ—10βˆ’6 𝑀, [Cl2] = 6.62Γ—10βˆ’6𝑀

736
views
Textbook Question

At 900 K, the following reaction has 𝐾𝑝 = 0.345: 2 SO2(𝑔) + O2(𝑔) β‡Œ 2 SO3(𝑔) In an equilibrium mixture the partial pressures of SO2 and O2 are 0.135 atm and 0.455 atm, respectively. What is the equilibrium partial pressure of SO3 in the mixture?

1045
views
Textbook Question

At 2000Β°C, the equilibrium constant for the reaction 2 NO(𝑔) β‡Œ N2(𝑔) + O2(𝑔) is 𝐾𝑐 = 2.4Γ—103. If the initial concentration of NO is 0.175 M, what are the equilibrium concentrations of NO, N2, and O2?

983
views
Textbook Question

At 373 K, 𝐾𝑝 = 0.416 for the equilibrium 2 NOBr(𝑔) β‡Œ 2 NO(𝑔) + Br2(𝑔) If the pressures of NOBr(𝑔) and NO(𝑔) are equal, what is the equilibrium pressure of Br2(𝑔)?

516
views
Textbook Question

At 218Β°C, 𝐾𝑐 = 1.2Γ—10βˆ’4 for the equilibrium NH4SH(𝑠) β‡Œ NH3(𝑔) + H2S(𝑔) Calculate the equilibrium concentrations of NH3 and H2S if a sample of solid NH4SH is placed in a closed vessel at 218Β°C and decomposes until equilibrium is reached.

984
views
2
rank
Textbook Question

At 80Β°C, 𝐾𝑐 = 1.87Γ—10βˆ’3 for the reaction PH3BCl3(𝑠) β‡Œ PH3(𝑔) + BCl3(𝑔) (a) Calculate the equilibrium concentrations of PH3 and BCl3 if a solid sample of PH3BCl3 is placed in a closed vessel at 80Β°C and decomposes until equilibrium is reached.

496
views