The reaction 2 NO2¡2 NO + O2 has the rate constant k = 0.63 M- 1s - 1. (b) If the initial concentration of NO2 is 0.100 M, how would you determine how long it would take for the concentration to decrease to 0.025 M?
The reaction H₂O₂(aq) → H₂O(l) + 1/2 O₂(g) is first order. At 300 K, the rate constant equals 7.0 * 10⁻⁴ s⁻¹. If the activation energy for this reaction is 75 kJ/mol, at what temperature would the reaction rate be doubled?

Consider two reactions. Reaction (1) has a constant halflife, whereas reaction (2) has a half-life that gets longer as the reaction proceeds. What can you conclude about the rate laws of these reactions from these observations?
Americium-241 is used in smoke detectors. It has a first-order rate constant for radioactive decay of k = 1.6 * 10-3 yr-1. By contrast, iodine-125, which is used to test for thyroid functioning, has a rate constant for radioactive decay of k = 0.011 day-1. (b) Which one decays at a faster rate?
Americium-241 is used in smoke detectors. It has a first-order rate constant for radioactive decay of k = 1.6 * 10-3 yr-1. By contrast, iodine-125, which is used to test for thyroid functioning, has a rate constant for radioactive decay of k = 0.011 day-1. (c) How much of a 1.00-mg sample of each isotope remains after three half-lives?
The rate of a first-order reaction is followed by spectroscopy, monitoring the absorbance of a colored reactant at 520 nm. The reaction occurs in a 1.00-cm sample cell, and the only colored species in the reaction has an extinction coefficient of 5.60 * 103 M-1 cm-1 at 520 nm. (a) Calculate the initial concentration of the colored reactant if the absorbance is 0.605 at the beginning of the reaction.