Skip to main content
Ch.14 - Chemical Kinetics
Chapter 14, Problem 47c

Consider the data presented in Exercise 14.19. (c) What is the half-life for the reaction?
Table showing time in minutes and corresponding moles of substance C for chemical kinetics.

Verified Solution

Video duration:
7m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Half-life

Half-life is the time required for the concentration of a reactant to decrease to half of its initial value. In chemical kinetics, it is a crucial concept for understanding the rate of a reaction and is particularly useful for first-order reactions, where the half-life remains constant regardless of the initial concentration.
Recommended video:
Guided course
02:17
Zero-Order Half-life

Reaction Rate

The reaction rate is a measure of how quickly reactants are converted into products in a chemical reaction. It can be expressed in terms of the change in concentration of a reactant or product over time. Understanding the reaction rate is essential for calculating half-lives and predicting how long a reaction will take to reach a certain point.
Recommended video:
Guided course
02:03
Average Rate of Reaction

Integrated Rate Laws

Integrated rate laws relate the concentration of reactants or products to time, allowing for the calculation of concentrations at any given time. For first-order reactions, the integrated rate law can be used to determine the half-life and is expressed as ln([A]0/[A]) = kt, where [A]0 is the initial concentration, [A] is the concentration at time t, and k is the rate constant.
Recommended video:
Guided course
01:52
Rate Law Fundamentals
Related Practice
Textbook Question

The first-order rate constant for the decomposition of N2O5, 2 N2O51g2¡4 NO21g2 + O21g2, a t 70 C i s 6.82 * 10-3 s-1. Suppose we start with 0.0250 mol of N2O51g2 in a volume of 2.0 L. (a) How many moles of N2O5 will remain after 5.0 min?

2863
views
Textbook Question

The first-order rate constant for the decomposition of N2O5, 2 N2O51g2¡4 NO21g2 + O21g2, a t 70 C i s 6.82 * 10-3 s-1. Suppose we start with 0.0250 mol of N2O51g2 in a volume of 2.0 L. (c) What is the half-life of N2O5 at 70 C ?

1058
views
Textbook Question

From the following data for the first-order gas-phase isomerization of CH3NC at 215 C, calculate the firstorder rate constant and half-life for the reaction: Time (s) Pressure CH3nC (torr) 0 502 2000 335 5000 180 8000 95.5 12,000 41.7 15,000 22.4

1191
views
Textbook Question

The gas-phase decomposition of NO2, 2 NO21g2¡ 2 NO1g2 + O21g2, is studied at 383 C, giving the following data: Time (s) 3no2 4 (M) 0.0 0.100 5.0 0.017 10.0 0.0090 15.0 0.0062 20.0 0.0047 (c) Predict the reaction rates at the beginning of the reaction for initial concentrations of 0.200 M, 0.100 M, and 0.050 M NO2.

1744
views
Textbook Question

Sucrose 1C12H22O112, commonly known as table sugar, reacts in dilute acid solutions to form two simpler sugars, glucose and fructose, both of which have the formula C6H12O6. At 23 C and in 0.5 M HCl, the following data were obtained for the disappearance of sucrose: Time (min) 3C12H22o11 4 1M2 0 0.316 39 0.274 80 0.238 140 0.190 210 0.146 (a) Is the reaction first order or second order with respect to 3C12H22O114?

2567
views
Textbook Question

(a) What factors determine whether a collision between two molecules will lead to a chemical reaction?

607
views