Skip to main content
Ch.13 - Properties of Solutions
Chapter 13, Problem 94a

The presence of the radioactive gas radon (Rn) in well water presents a possible health hazard in parts of the United States. (a) Assuming that the solubility of radon in water with 1 atm pressure of the gas over the water at 30 °C is 7.27⨉10-3 M, what is the Henry's law constant for radon in water at this temperature?

Verified Solution

Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Henry's Law

Henry's Law states that the amount of gas that dissolves in a liquid at a given temperature is directly proportional to the partial pressure of that gas above the liquid. This relationship can be expressed mathematically as C = kH * P, where C is the concentration of the gas in the liquid, kH is the Henry's law constant, and P is the partial pressure of the gas.
Recommended video:
Guided course
01:40
Henry's Law Calculations

Solubility

Solubility refers to the maximum amount of a substance that can dissolve in a solvent at a specific temperature and pressure. In the context of gases, solubility is influenced by factors such as temperature and pressure, with higher pressures generally increasing the solubility of gases in liquids.
Recommended video:
Guided course
00:28
Solubility Rules

Units of Henry's Law Constant

The Henry's law constant (kH) can be expressed in various units, depending on the context. Commonly, it is given in mol/(L·atm) or M/atm, indicating the concentration of the gas in moles per liter per unit of pressure in atmospheres. Understanding the units is crucial for correctly applying Henry's Law to calculate gas solubility.
Recommended video:
Guided course
01:40
Henry's Law Calculations
Related Practice
Textbook Question

A supersaturated solution of sucrose (C12H22O11) is made by dissolving sucrose in hot water and slowly letting the solution cool to room temperature. After a long time, the excess sucrose crystallizes out of the solution. Indicate whether each of the following statements is true or false: (b) After the excess sucrose has crystallized out, the system is now unstable and is not in equilibrium.

1355
views
Textbook Question

Most fish need at least 4 ppm dissolved O2 in water for survival. (a) What is this concentration in mol/L?

908
views
Textbook Question

Most fish need at least 4 ppm dissolved O2 in water for survival. (b) What partial pressure of O2 above water is needed to obtain 4 ppm O2 in water at 10 °C? (The Henry's law constant for O2 at this temperature is 1.71⨉10-3 mol/L-atm.)

597
views
Textbook Question

The maximum allowable concentration of lead in drinking water is 9.0 ppb. (b) How many grams of lead are in a swimming pool containing 9.0 ppb lead in 60 m3 of water?

1826
views
Textbook Question

Acetonitrile (CH3CN) is a polar organic solvent that dissolves a wide range of solutes, including many salts. The density of a 1.80 M LiBr solution in acetonitrile is 0.826 g/cm3. Calculate the concentration of the solution in (a) molality,

630
views
Textbook Question

Acetonitrile (CH3CN) is a polar organic solvent that dissolves a wide range of solutes, including many salts. The density of a 1.80 M LiBr solution in acetonitrile is 0.826 g/cm3. Calculate the concentration of the solution in (b) mole fraction of LiBr,

819
views