Skip to main content
Ch.15 - Chemical Equilibrium
Chapter 15, Problem 70

The vapor pressure of water at 25 °C is 0.0313 atm. Cal- culate the values of Kp and Kc at 25 °C for the equilibrium H2O1l2 ∆ H2O1g2.

Verified Solution

Video duration:
3m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Vapor Pressure

Vapor pressure is the pressure exerted by a vapor in equilibrium with its liquid or solid phase at a given temperature. For water at 25 °C, the vapor pressure of 0.0313 atm indicates the tendency of water molecules to escape from the liquid phase into the gas phase. This concept is crucial for understanding the behavior of substances in equilibrium and is foundational for calculating equilibrium constants.
Recommended video:
Guided course
02:40
Raoult's Law and Vapor Pressure

Equilibrium Constant (Kp and Kc)

The equilibrium constant (K) quantifies the ratio of the concentrations of products to reactants at equilibrium. Kp is used for gas-phase reactions and is expressed in terms of partial pressures, while Kc is used for reactions in solution and is expressed in terms of molar concentrations. The relationship between Kp and Kc is given by the equation Kp = Kc(RT)^(Δn), where Δn is the change in moles of gas, R is the ideal gas constant, and T is the temperature in Kelvin.
Recommended video:
Guided course
02:06
Kp vs. Kc Formula

Phase Equilibrium

Phase equilibrium occurs when the rates of the forward and reverse processes of a phase change are equal, resulting in no net change in the amounts of each phase. In the context of the reaction H2O(l) ⇌ H2O(g), this equilibrium is influenced by temperature and pressure. Understanding phase equilibrium is essential for calculating Kp and Kc, as it helps to determine the concentrations or pressures of the reactants and products at equilibrium.
Recommended video:
Guided course
03:22
Phase Changes in Diagrams
Related Practice
Textbook Question
Identify the true statement about the rate of the forward and reverse reaction once a reaction has reached equilibrium. (a) The rate of the forward reaction and the reverse reaction is zero. (b) The rate of the forward reaction is greater than the rate of the reverse reaction. (c) The rate of the reverse reaction is greater than the rate of the forward reaction. (d) The rate of the forward reaction is equal to the rate of the reverse reaction.
1103
views
Textbook Question
For each of the equilibria in Problem 15.56, write the equi-librium constant expression for Kp and give the equation that relates Kp and Kc. (a)
379
views
1
rank
Textbook Question

The reaction 2 AsH31g2 ∆ As21g2 + 3 H21g2 has Kp = 7.2 * 107 at 1073 K. At the same temperature, what is Kp for each of the following reactions? (a) As21g2 + 3 H21g2 ∆ 2 AsH31g2

340
views
Textbook Question
For each of the following equilibria, write the equilibrium constant expression for Kc. Where appropriate, also write the equilibrium constant expression for Kp. (a) Fe2O31s2 + 3 CO1g2 ∆ 2 Fe1l2 + 3 CO21g2
488
views
Textbook Question
Which of the following reactions yield appreciable equilib- rium concentrations of both reactants and products? (a) 2 Cu1s2 + O21g2 ∆ 2 CuO1s2; Kc = 4 * 1045
572
views
Textbook Question
The value of Kc for the reaction 3 O21g2 ∆ 2 O31g2 is 1.7 * 10-56 at 25°C. Do you expect pure air at 25 °C to contain much O3 (ozone) when O2 and O3 are in equilib- rium? If the equilibrium concentration of O2 in air at 25 °C is 8 * 10-3 M, what is the equilibrium concentration of O3?
601
views