Skip to main content
Ch.15 - Chemical Equilibrium
Chapter 15, Problem 10a

The diagram shown here represents the equilibrium state for the reaction A2(𝑔) + 2B(𝑔) β‡Œ 2AB(𝑔). (a) Assuming the volume is 2 L, calculate the equilibrium constant 𝐾𝑐 for the reaction.

Verified Solution

Video duration:
3m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Equilibrium Constant (Kc)

The equilibrium constant, Kc, is a numerical value that expresses the ratio of the concentrations of products to reactants at equilibrium for a given reaction at a specific temperature. It is calculated using the formula Kc = [products]^[coefficients] / [reactants]^[coefficients]. A Kc value greater than 1 indicates that products are favored at equilibrium, while a value less than 1 suggests that reactants are favored.
Recommended video:
Guided course
03:20
Equilibrium Constant Expressions

Concentration

Concentration refers to the amount of a substance (solute) present in a given volume of solution. It is typically expressed in moles per liter (Molarity, M). In equilibrium calculations, the concentrations of the reactants and products at equilibrium are essential for determining the value of Kc, as they directly influence the ratio used in the equilibrium expression.
Recommended video:
Guided course
07:35
Calculate Concentration of the Basic Form

Stoichiometry

Stoichiometry is the branch of chemistry that deals with the quantitative relationships between the reactants and products in a chemical reaction. It involves using the coefficients from the balanced chemical equation to relate the amounts of substances consumed and produced. In the context of equilibrium, stoichiometry is crucial for determining the concentrations of reactants and products based on their initial amounts and the changes that occur as the system reaches equilibrium.
Recommended video:
Guided course
01:16
Stoichiometry Concept
Related Practice
Textbook Question

When lead(IV) oxide is heated above 300Β°C, it decomposes according to the reaction, 2 PbO2(𝑠)β‡Œ2PbO(𝑠)+O2(𝑔). Consider the two sealed vessels of PbO2 shown here. If both vessels are heated to 400Β°C and allowed to come to equilibrium, which of the following statements is or are true?

b. There will be less PbO2 remaining in vessel B,

714
views
Textbook Question

When lead(IV) oxide is heated above 300Β°C, it decomposes according to the reaction, 2 PbO2(𝑠) β‡Œ 2PbO(𝑠) + O2(𝑔). Consider the two sealed vessels of PbO2 shown here. If both vessels are heated to 400Β°C and allowed to come to equilibrium, which of the following statements is or are true? (c) The amount of PbO2 remaining in each vessel will be the same. [Find more in Section 15.4]

304
views
Textbook Question

The reaction A2 + B2 β‡Œ 2 AB has an equilibrium constant Kc = 1.5. The following diagrams represent reaction mixtures containing A2 molecules (red), B2 molecules (blue), and AB molecules. (a) Which reaction mixture is at equilibrium?

1344
views
Textbook Question

Suppose that the gas-phase reactions A β†’ B and B β†’ A are both elementary reactions with rate constants of 4.7Γ—10βˆ’3β€Š sβˆ’1 and 5.8Γ—10βˆ’1 sβˆ’1, respectively. (b) Which is greater at equilibrium, the partial pressure of A or the partial pressure of B?

468
views
Textbook Question

The equilibrium constant for the dissociation of molecular iodine, I2(𝑔) β‡Œ 2 I(𝑔), at 800 K is 𝐾𝑐 = 3.1Γ—10βˆ’5. (b) Assuming both forward and reverse reactions are elementary reactions, which reaction has the larger rate constant, the forward or the reverse reaction?

1209
views
Textbook Question

Write the expression for 𝐾𝑐 for the following reactions. In each case indicate whether the reaction is homogeneous or heterogeneous.

(e) 2Ag(𝑠) + Zn2+(π‘Žπ‘ž) β‡Œ 2 Ag+(π‘Žπ‘ž) + Zn(𝑠)

573
views