Chapter 15, Problem 7b
When lead(IV) oxide is heated above 300Β°C, it decomposes according to the reaction, 2 PbO2(π )β2PbO(π )+O2(π). Consider the two sealed vessels of PbO2 shown here. If both vessels are heated to 400Β°C and allowed to come to equilibrium, which of the following statements is or are true?
b. There will be less PbO2 remaining in vessel B,
Video transcript
The following diagram represents a reaction shown going to completion. Each molecule in the diagram represents 0.1 mol, and the volume of the box is 1.0 L. (d) Assuming that all of the molecules are in the gas phase, calculate n, the change in the number of gas molecules that accompanies the reaction. [Section 15.2]
Ethene (C2H4) reacts with halogens (X2) by the following reaction:
C2H4(π) + X2(π) β C2H4X2(π)
The following figures represent the concentrations at equilibrium at the same temperature when X2 is Cl2 (green), Br2 (brown), and I2 (purple). List the equilibria from smallest to largest equilibrium constant. [Section 15.3]
When lead(IV) oxide is heated above 300Β°C, it decomposes according to the reaction, 2 PbO2(π ) β 2PbO(π ) + O2(π). Consider the two sealed vessels of PbO2 shown here. If both vessels are heated to 400Β°C and allowed to come to equilibrium, which of the following statements is or are true? a. There will be less PbO2 remaining in vessel A,
When lead(IV) oxide is heated above 300Β°C, it decomposes according to the reaction, 2 PbO2(π ) β 2PbO(π ) + O2(π). Consider the two sealed vessels of PbO2 shown here. If both vessels are heated to 400Β°C and allowed to come to equilibrium, which of the following statements is or are true? (c) The amount of PbO2 remaining in each vessel will be the same. [Find more in Section 15.4]
The reaction A2 + B2 β 2 AB has an equilibrium constant Kc = 1.5. The following diagrams represent reaction mixtures containing A2 molecules (red), B2 molecules (blue), and AB molecules. (a) Which reaction mixture is at equilibrium?
The diagram shown here represents the equilibrium state for the reaction A2(π) + 2B(π) β 2AB(π). (a) Assuming the volume is 2 L, calculate the equilibrium constant πΎπ for the reaction.