05:08Ex: Find the Value of a 4x4 Determinant Using Cofactor Expansion (with Zeros)Mathispower4u523views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y=−3x+4y=-3x+4y=−3x+4−2x=7y−9-2x=7y-9−2x=7y−9176views
Multiple ChoiceSolve the system of equations using Cramer's Rule.4x+2y+3z=64x+2y+3z=64x+2y+3z=6x+y+z=3x+y+z=3x+y+z=35x+y+2z=55x+y+2z=55x+y+2z=5141views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y−9x=−3y-9x=-3y−9x=−3−3x=4y−1-3x=4y-1−3x=4y−1139views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + y = 7 x - y = 3171views1rank
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13192views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13192views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 4x - 5y = 17 2x + 3y = 3198views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + 2y = 3 3x - 4y = 4248views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.157views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.199views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12202views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12202views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 2x = 3y + 2 5x = 51 - 4y207views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 0 0 2 1 - 5 2 5 - 1172views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5184views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5184views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 1 1 1 2 2 2 - 3 4 - 5160views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3175views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3200views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3200views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 1 5 6 1 4 5 1 9 10183views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3169views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8166views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8166views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. 4x - 5y - 6z = - 1 x - 2y - 5z = - 12 2x - y = 7298views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 4 x - 2y + z = 7 x + 3y + 2z = 4223views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13254views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13254views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 2x - 3y + 2z = 4 2x + 3y - 2z = 6 2x - 9y + 6z = 2270views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 4x - 3y - 2z = 12 8x - 6y - 4z = 22207views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1200views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1200views
Textbook QuestionEvaluate each determinant in Exercises 49–52. - 2 - 3 3 5 1 - 4 0 0 1 2 2 - 3 2 0 1 1182views
Textbook QuestionIn Exercises 53–54, evaluate each determinant. | | 3 1| |7 0| | | |- 2 3| |1 5| | | | | | 3 0| |9 - 6| | | | 0 7| |3 5| |181views
Textbook QuestionIn Exercises 55–56, write the system of linear equations for which Cramer's Rule yields the given determinants. 2 - 4 8 - 4 D = D_x = 3 5 - 10 5429views
Textbook QuestionUse the determinant theorems to evaluate each determinant. See Example 4.149views1rank
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|171views
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|171views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + y = 4 2x - y = 2255views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 4x + 3y = -7 2x + 3y = -11123views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 5x + 4y = 10 3x - 7y = 6143views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 1.5x + 3y = 5 2x + 4y = 3136views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 3x + 2y = 4 6x + 4y = 8125views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. (1/2)x + (1/3)y = 2 (3/2)x - (1/2)y = -12172views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 2x - y + 4z = -2 3x + 2y - z = -3 x + 4y + 2z = 17182views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + 2y + 3z = 4 4x + 3y + 2z = 1 -x - 2y - 3z = 0196views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. -2x - 2y + 3z = 4 5x + 7y - z = 2 2x + 2y - 3z = -4161views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 0 - 2 1 1 2 0 3 - 1 0 1 1 0 1 1 1 A = B = 0 1 - 1 0 0 1 0 1 1 0 0 - 1 1 2 0 264views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 1 2 3 7/2 - 3 1/2 A = 1 3 4 B = - 1/2 0 1/2 1 4 3 - 1/2 1 - 1/273views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 1 0 0 0 1 A = 0 0 1 B = 1 0 0 1 0 0 0 1 0131views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. w - x + 2y = - 3 x - y + z = 4 - w + x - y + 2z = 2 - x + y - 2z = - 4 The inverse of is 75views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. x - y + z = 8 2y - z = - 7 2x + 3y = 1 The inverse of is 80views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. 2x + 6y + 6z = 8 2x + 7y + 6z = 10 2x + 7y + 7z = 9 The inverse of is 63views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 2 1 1 2 A = B = 3/2 - 1/2 3 457views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 4 0 - 2 4 A = B = 1 3 0 153views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 4 - 3 4 3 A = B = - 5 4 5 445views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 43views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 55views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. x + 3y + 4z = - 3 x + 2y + 3z = - 2 x + 4y + 3z = - 6100views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. 6x + 5y = 13 5x + 4y = 10104views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 10 - 2 A = - 5 142views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 3 - 1 A = - 4 249views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 2 3 A = - 1 252views
Textbook QuestionIn Exercises 43–44, (a) Write each linear system as a matrix equation in the form AX = B (b) Solve the system using the inverse that is given for the coefficient matrix.69views
Textbook QuestionIn Exercises 37–38, find the products and to determine whether B is the multiplicative inverse of A.67views
Textbook QuestionAnswer each question. What is the product of [2x2 matrix] and I2 (in either order)?19views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [2x2 matrix] and [2x2 matrix]29views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [3x3 matrix] and [3x3 matrix]22views