Multiple ChoiceGiven the functions f(x)=x+4f\left(x\right)=\sqrt{x+4}f(x)=x+4 and g(x)=(x−2)2−4g\left(x\right)=\left(x-2\right)^2-4g(x)=(x−2)2−4 find (f∘g)(x)\left(f\circ g\right)\left(x\right)(f∘g)(x) and (g∘f)(x)\left(g\circ f\right)\left(x\right)(g∘f)(x)179views2rank2comments
Multiple ChoiceGiven the functions f(x)=1x2−2f(x)=\frac{1}{x^2-2}f(x)=x2−21 and g(x)=x+2g(x)=\sqrt{x+2}g(x)=x+2 find (f∘g)(x)(f∘g)(x)(f∘g)(x) and (g∘f)(x)(g\circ f)(x)(g∘f)(x).177views
Multiple ChoiceGiven the functions f(x)=x+3f(x)=x+3f(x)=x+3 and g(x)=x2g(x)= x^2g(x)=x2 find (f∘g)(2)(f∘g)(2)(f∘g)(2) and (g∘f)(2)(g∘f)(2)(g∘f)(2).165views
Multiple ChoiceGiven the functions f(x)=x2f(x) = x^2f(x)=x2 and g(x)=x−8g(x)=\sqrt{x-8}g(x)=x−8 find (f∘g)(x)(f∘g)(x)(f∘g)(x) and determine its domain.167views
Textbook QuestionWithout using paper and pencil, evaluate each expression given the following functions. ƒ(x)=x+1 and g(x)=x^2 (ƒg)(2)169views
Textbook QuestionWithout using paper and pencil, evaluate each expression given the following functions. ƒ(x)=x+1 and g(x)=x^2 (ƒ∘g)(2)238views
Textbook QuestionWithout using paper and pencil, evaluate each expression given the following functions. ƒ(x)=x+1 and g(x)=x^2 (g∘ƒ)(2)341views
Textbook QuestionLet ƒ(x)=x^2+3 and g(x)=-2x+6. Find each of the following. See Example 1. (ƒ+g)(3)188views
Textbook QuestionIn Exercises 1–30, find the domain of each function. f(x) = 1/(x^2+1) - 1/(x^2-1)235views
Textbook QuestionLet ƒ(x)=x^2+3 and g(x)=-2x+6. Find each of the following. See Example 1. (ƒg)(-3)193views
Textbook QuestionLet ƒ(x)=x^2+3 and g(x)=-2x+6. Find each of the following. See Example 1. (ƒ/g)(-1)219views
Textbook QuestionFor the pair of functions defined, find (f/g)(x).Give the domain of each. See Example 2. ƒ(x)=3x+4, g(x)=2x-8202views
Textbook QuestionFor the pair of functions defined, find (ƒg)(x).Give the domain of each. See Example 2. ƒ(x)=3x+4, g(x)=2x-7198views
Textbook QuestionFor the pair of functions defined, find (ƒ/g)(x). Give the domain of each. See Example 2. ƒ(x)=2x^2-3x, g(x)=x^2-x+3188views
Textbook QuestionFor the pair of functions defined, find (ƒ-g)(x). Give the domain of each. See Example 2. ƒ(x)=2x^2-3x, g(x)=x^2-x+3209views
Textbook QuestionFor the pair of functions defined, find (f/g)(x).Give the domain of each. See Example 2. ƒ(x)=√(4x-1), g(x)=1/x174views
Textbook QuestionFor the pair of functions defined, find (ƒg)(x). Give the domain of each. See Example 2. ƒ(x)=√(4x-1), g(x)=1/x167views
Textbook QuestionIn Exercises 1–30, find the domain of each function. f(x) = (2x+7)/(x^3 - 5x^2 - 4x+20)225views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x) = 2x + 3, g(x) = x − 1219views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 2x + 3, g(x) = x − 1216views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = 2x + 3, g(x) = x − 1272views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = x -5, g(x) = 3x²201views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = 2x² − x − 3, g (x) = x + 1182views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 2x² − x − 3, g (x) = x + 1230views
Textbook QuestionIn Exercises 31–50, find f−g and determine the domain for each function. f(x) = 2x² − x − 3, g (x) = x + 1238views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x) = 3 − x², g(x) = x² + 2x − 18252views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 3 − x², g(x) = x² + 2x − 17440views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = √x, g(x) = x − 4197views
Textbook QuestionIn Exercises 31–50, find f−g and determine the domain for each function. f(x) = √x, g(x) = x − 4191views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = 2 + 1/x, g(x) = 1/x196views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x) = 2 + 1/x, g(x) = 1/x203views
Textbook QuestionIn Exercises 31–50, find ƒ+g and determine the domain for each function. f(x)= = (5x+1)/(x² - 9), g(x) = (4x -2)/(x² - 9)179views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=2-x195views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x)= = (5x+1)/(x² - 9), g(x) = (4x -2)/(x² - 9)420views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x)= = 8x/(x - 2), g(x) = 6/(x+3)190views
Textbook QuestionIn Exercises 31–50, find f−g and determine the domain for each function. f(x)= = 8x/(x - 2), g(x) = 6/(x+3)180views
Textbook QuestionIn Exercises 31–50, find f/g and determine the domain for each function. f(x) = √(x +4), g(x) = √(x − 1)187views
Textbook QuestionIn Exercises 31–50, find fg and determine the domain for each function. f(x) = √(x +4), g(x) = √(x − 1)180views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=-2x+5191views
Textbook QuestionIn Exercises 31–50, find ƒ+g, f−g, fg, and f/g. Determine the domain for each function. f(x) = √(x -2), g(x) = √(2-x)189views
Textbook QuestionIn Exercises 31–50, find ƒ+g, f−g, fg, and f/g. Determine the domain for each function. f(x) = √(x -2), g(x) = √(2-x)262views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=1/x187views
Textbook QuestionIn Exercises 31–50, find ƒ+g, f−g, fg, and f/g. Determine the domain for each function. f(x) = √(x -2), g(x) = √(2-x)292views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) c. (fog) (2) d. (go f) (2). f(x) = 2x, g(x) = x+7176views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) c. (fog) (2) d. (go f) (2). f(x) = x+4, g(x) = 2x + 1231views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=1-x^2176views
Textbook QuestionFor each function, find (a)ƒ(x+h), (b)ƒ(x+h)-ƒ(x), and (c)[ƒ(x+h)-ƒ(x)]/h.See Example 4. ƒ(x)=x^2+3x+1229views
Textbook QuestionIn Exercises 51–66, find a. (fog) (2) b. (go f) (2) f(x)=4x-3, g(x) = 5x² - 2213views
Textbook QuestionIn Exercises 51–66, find a. (fog) (2) b. (go f) (2) f(x) = x²+2, g(x) = x² – 2246views
Textbook QuestionLet ƒ(x)=2x-3 and g(x)=-x+3. Find each function value. See Example 5. (ƒ∘g)(-2)200views
Textbook QuestionIn Exercises 51–66, find a. (fog) (2) b. (go f) (2) f(x) = 4-x, g(x) = 2x² +x+5211views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) f(x) = 4-x, g(x) = 2x² +x+5291views
Textbook QuestionLet ƒ(x)=2x-3 and g(x)=-x+3. Find each function value. See Example 5. (g∘ƒ)(0)227views
Textbook QuestionIn Exercises 51–66, find c. (fog) (2) d. (go f) (2). f(x) = √x, g(x) = x − 1263views
Textbook QuestionLet ƒ(x)=2x-3 and g(x)=-x+3. Find each function value. See Example 5. (ƒ∘ƒ)(2)234views
Textbook QuestionIn Exercises 51–66, find a. (fog) (x) b. (go f) (x) c. (fog) (2) d. (go f) (2). f(x) = 2x-3, g(x) = (x+3)/2304views
Textbook QuestionIn Exercises 59-64, let f(x) = 2x - 5 g(x) = 4x - 1 h(x) = x² + x + 2. Evaluate the indicated function without finding an equation for the function. g (f[h (1)])235views
Textbook QuestionIn Exercises 59-64, let f(x) = 2x - 5 g(x) = 4x - 1 h(x) = x² + x + 2. Evaluate the indicated function without finding an equation for the function. f(g[h (1)])181views
Textbook QuestionIn Exercises 67-74, find a. (fog) (x) b. the domain of f o g. f(x) = √x, g(x) = x − 2226views
Textbook QuestionIn Exercises 67-74, find a. (fog) (x) b. the domain of f o g. f(x) = x² + 4, g(x) = √(1 − x)212views
Textbook QuestionGiven functions f and g, (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=-6x+9, g(x)=5x+7207views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=8x+12, g(x)=3x-1253views
Textbook QuestionIn Exercises 75-82, express the given function h as a composition of two functions ƒ and g so that h(x) = (fog) (x). h(x) = (3x − 1)^4299views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=x^3, g(x)=x^2+3x-1180views
Textbook QuestionGiven functions f and g, (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=x^3, g(x)=x^2+3x-1246views
Textbook QuestionGiven functions f and g, find (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=x+2, g(x)=x^4+x^2-4204views
Textbook QuestionGiven functions f and g, find (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x-1), g(x)=3x287views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x-1), g(x)=3x200views
Textbook QuestionIn Exercises 76–81, find the domain of each function. f(x) = x/(x^2 + 4x -21)220views
Textbook QuestionIn Exercises 75-82, express the given function h as a composition of two functions ƒ and g so that h(x) = (fog) (x). h(x) = 1/(2x-3)439views1rank
Textbook QuestionGiven functions f and g, find (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=2/x, g(x)=x+1378views
Textbook QuestionIn Exercises 82–84, find f + g, f - g, fg, and f/g. f(x) = x^2 + x + 1, g(x) = x^2 -1199views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain, and (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x+2), g(x)=-(1/x)225views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain, and (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=√(x+2), g(x)=-(1/x)192views
Textbook QuestionGiven functions f and g, (b)(g∘ƒ)(x) and its domain. See Examples 6 and 7. ƒ(x)=1/(x-2), g(x)=1/x175views
Textbook QuestionUse the graphs of f and g to solve Exercises 83–90. Find the domain of ƒ + g.326views
Textbook QuestionGiven functions f and g, find (a)(ƒ∘g)(x) and its domain. See Examples 6 and 7. ƒ(x)=1/(x-2), g(x)=1/x172views
Textbook QuestionIn Exercises 91–94, use the graphs of f and g to evaluate each composite function. (go f) (0)686views
Textbook QuestionIn Exercises 95–96, find all values of x satisfying the given conditions. f(x) = 2x − 5, g(x) = x² − 3x + 8, and (ƒ o g) (x) = 7.574views
Textbook QuestionLet ƒ(x) = 3x^2 - 4 and g(x) = x^2 - 3x -4. Find each of the following. (f/g)(-1)200views
Textbook QuestionLet ƒ(x) = √(x-2) and g(x) = x^2. Find each of the following, if possible. (g ○ ƒ)(x)175views
Textbook QuestionLet ƒ(x) = √(x-2) and g(x) = x^2. Find each of the following, if possible. (g ○ ƒ)(3)184views
Textbook QuestionLet ƒ(x) = √(x-2) and g(x) = x^2. Find each of the following, if possible. the domain of ƒ ○ g180views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = (x+2)³31views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = x³ +249views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = 2x + 330views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = 2x29views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = x +355views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = ∛(x − 4) and g(x) = x³ +425views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = = -x and g(x) = -x45views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = 3/(x-4) and g(x) = 3/x + 451views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x)=5x-9 and g(x) = (x+5)/931views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = 4x + 9 and g(x) = (x-9)/433views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x) = 4x and g(x) = x/432views
Textbook QuestionExercises 123–125 will help you prepare for the material covered in the next section. Solve for y: x = y² -1, y ≥ 0.40views
Textbook QuestionExercises 123–125 will help you prepare for the material covered in the next section. Solve for y : x = 5/y + 433views
Textbook QuestionIn Exercises 59-64, let f(x) = 2x - 5 g(x) = 4x - 1 h(x) = x² + x + 2. Evaluate the indicated function without finding an equation for the function. ƒ¹ (1)35views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = (2x +1)/(x-3)23views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = (x +4)/(x-2)32views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = √x59views
Textbook QuestionIn Exercises 101–102, find an equation for f^(-1)(x). Then graph f and f^(-1) in the same rectangular coordinate system. f(x) = 1 - x^2, x ≥ 0.34views
Textbook QuestionWhich graphs in Exercises 96–99 represent functions that have inverse functions?25views
Textbook QuestionThe functions in Exercises 93–95 are all one-to-one. For each function, (a) find an equation for f^(-1)x, the inverse function. (b) Verify that your equation is correct by showing that f(f^(-1)(x)) = x and f^(-1)(f(x)) = x. f(x) = (x - 7)/(x + 2)162views
Textbook QuestionThe functions in Exercises 93–95 are all one-to-one. For each function, (a) find an equation for f^(-1)x, the inverse function. (b) Verify that your equation is correct by showing that f(f^(-1)(x)) = x and f^(-1)(f(x)) = x. f(x) = 4x - 3109views
Textbook QuestionUse a graphing calculator to graph each equation in the standard viewing window. y = 3x + 44views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = -√100 - x^29views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = 2x^3 - 111views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = -1 / x+211views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = x+4 / x-38views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = 2(x+1)^2 - 613views
Textbook QuestionDetermine whether each function graphed or defined is one-to-one. y = ∛x+1 - 316views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = -4x+2, g(x) = -1/4x - 219views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = x+1/x-2, g(x) = 2x+1/x-116views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = 2/x+6, g(x) = 6x+2/x9views
Textbook QuestionUse the definition of inverses to determine whether ƒ and g are inverses. f(x) = x^2+3, x≥0; g(x) = √x-3, x≥310views
Textbook QuestionDetermine whether the given functions are inverses. ƒ= {(2,5), (3,5), (4,5)}; g = {(5,2)}11views
Textbook QuestionFind the inverse of each function that is one-to-one. {(3,-1), (5,0), (0,5), (4, 2/3)}14views
Textbook QuestionFind the inverse of each function that is one-to-one. {(1, -3), (2, -7), (4, -3), (5, -5)}14views
Textbook QuestionIn Exercises 1-10, find f(g(x)) and g (f(x)) and determine whether each pair of functions ƒ and g are inverses of each other. f(x)=3x+8 and g(x) = (x-8)/39views
Textbook QuestionThe functions in Exercises 11-28 are all one-to-one. For each function, a. Find an equation for f^-1(x), the inverse function. b. Verify that your equation is correct by showing that f(ƒ^-1 (x)) = = x and ƒ^-1 (f(x)) = x. f(x) = 1/x37views
Textbook QuestionWhich graphs in Exercises 29–34 represent functions that have inverse functions?36views
Textbook QuestionWhich graphs in Exercises 29–34 represent functions that have inverse functions?17views
Textbook QuestionWhich graphs in Exercises 29–34 represent functions that have inverse functions?15views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range of f and ƒ¯¹. f(x)=2x-129views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range of f and ƒ¯¹. ƒ(x) = x² − 4, x ≥ 057views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = (x − 1)², x ≤ 124views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = x³ − 131views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = (x+2)³29views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = √(x-1)30views
Textbook QuestionIn Exercises 39-52, a. Find an equation for ƒ¯¹(x). b. Graph ƒ and ƒ¯¹(x) in the same rectangular coordinate system. c. Use interval notation to give the domain and the range off and ƒ¯¹. f(x) = ∛x + 133views