Multiple ChoiceSolve the Equation. 3(2−5x)=4x+253\left(2-5x\right)=4x+253(2−5x)=4x+25360views28rank
Multiple ChoiceSolve the equation. Then state whether it is an identity, conditional, or inconsistent equation. x4+16=x3\frac{x}{4}+\frac16=\frac{x}{3}4x+61=3x256views5rank3comments
Multiple ChoiceSolve the equation. Then state whether it is an identity, conditional, or inconsistent equation. −2(5−3x)+x=7x−10-2\left(5-3x\right)+x=7x-10−2(5−3x)+x=7x−10263views6rank2comments
Multiple ChoiceSolve the equation. Then state whether it is an identity, conditional, or inconsistent equation. 5x+17=8x+12−3(x+4)5x+17=8x+12-3\left(x+4\right)5x+17=8x+12−3(x+4)172views
Multiple ChoiceSolve the equation.92+14(x+2)=34x\frac92+\frac14\left(x+2\right)=\frac34x29+41(x+2)=43x291views8rank
Multiple ChoiceSolve the equation. Then state whether it is an identity, conditional, or inconsistent equation. 5x+17=8x+12−3(x+4)5x+17=8x+12-3\left(x+4\right)267views5rank
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 1/x + 2 = 3/x239views
Textbook QuestionSolve each equation. A= 24f / B(p+1), for f (approximate annual interest rate)311views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. (x−2)/2x + 1 = (x+1)/x230views
Textbook QuestionDecide whether each statement is true or false. The solution set of 2x+5=x -3 is {-8}.284views
Textbook QuestionSolve each problem. If x represents the number of pennies in a jar in an applied problem, which of the following equations cannot be a correct equation for finding x? (Hint:Solve the equations and consider the solutions.) A. 5x+3 =11 B.12x+6 =-4 C.100x =50(x+3) D. 6(x+4) =x+24259views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 3/(x+1) = 5/(x−1)218views
Textbook QuestionIn Exercises 1–26, solve and check each linear equation. 11x - (6x - 5) = 40379views
Textbook QuestionDecide whether each statement is true or false. The equation 5x=4x is an example of a contradiction.356views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. (x−6)/(x+5) = (x−3)/(x+1)205views
Textbook QuestionIn Exercises 1–14, simplify the expression or solve the equation, whichever is appropriate. 3x/4 - x/3 + 1 = 4x/5 - 3/20204views
Textbook QuestionIn Exercises 1–14, simplify the expression or solve the equation, whichever is appropriate. 4x-2(1-x)=3(2x+1)-5198views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 1 − 4/(x+7) = 5/(x+7)191views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 2x-5 = 7278views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 7(x-4) = x + 2265views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 2(x-4)+3(x+5)=2x-2277views
Textbook QuestionIn Exercises 1–26, solve and check each linear equation. 2(x - 1) + 3 = x - 3(x + 1)299views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 6/x − x/3 = 1214views
Textbook QuestionIn Exercises 1–26, solve and check each linear equation. 2 - (7x + 5) = 13 - 3x219views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 7x + 13 = 2(2x-5) + 3x + 23264views
Textbook QuestionIn Exercises 1–26, solve and check each linear equation. 16 = 3(x - 1) - (x - 7)261views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 1/x−1 + 1/x+1 = 2/x²−1192views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. (3x+1)/3 - 13/2 = (1-x)/4305views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. x/3 = x/2 - 2277views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. 20 - x/3 = x/2250views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. x/5 - 1/2 = x/6304views1rank
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 2/(x+3) − 5/(x+1) = (3x+5)/(x²+4x+3)201views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. 3x/5 = 2x/3 + 1229views
Textbook QuestionDetermine whether each equation is an identity, a conditional equation, or a contradic-tion. Give the solution set. 1/2(6x+20) = x+4 +2(x+3)1016views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 3y/(y²+5y+6) + 2/(y²+y−2) = 5y/(y²+2y−3)212views
Textbook QuestionDetermine whether each equation is an identity, a conditional equation, or a contradic-tion. Give the solution set. 2(x-8) = 3x-16690views1comments
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 3-5(2x + 1) - 2(x-4) = 0520views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. (x + 3)/6 = 3/8 + (x - 5)/4323views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. 5 + (x - 2)/3 = (x + 3)/8244views
Textbook QuestionDetermine whether each equation is an identity, a conditional equation, or a contradic-tion. Give the solution set. -0.6(x-5)+0.8(x-6) = 0.2x - 1.8375views
Textbook QuestionSolve each formula for the specified variable. Assume that the denominator is not 0 if variables appear in the denominator. I=Prt,for P (simple interest)279views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. 3x/5 - (x - 3)/2 = (x + 2)/3253views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 4/x = 5/2x + 3278views
Textbook QuestionSolve each formula for the specified variable. Assume that the denominator is not 0 if variables appear in the denominator. P=2l+2w,for w (perimeter of a rectangle)209views
Textbook QuestionSolve each formula for the specified variable. Assume that the denominator is not 0 if variables appear in the denominator. F = GMm/r², for m (force of gravity)265views
Textbook QuestionSolve each formula for the specified variable. Assume that the denominator is not 0 if variables appear in the denominator. s = 1/2gt², for g (distance traveled by a falling object)241views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 5/2x - 8/9 = 1/18 - 1/3x417views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. (x - 2)/2x + 1 = (x + 1)/x902views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 1/(x - 1) + 5 = 11/(x - 1)538views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 3/(x + 4) - 7 = - 4/(x + 4)271views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 3/(2x - 2) + 1/2 = 2/(x - 1)374views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 3/(x + 2) + 2/(x - 2) = 8/(x + 2)(x - 2)423views
Textbook QuestionIn Exercises 61–66, find all values of x satisfying the given conditions. y1 = 5(2x - 8) - 2, y2 = 5(x - 3) + 3, and y1 = y2.454views
Textbook QuestionIn Exercises 61–66, find all values of x satisfying the given conditions. y1 = (x - 3)/5, y2 = (x - 5)/4, and y1 - y2 = 1.245views
Textbook QuestionIn Exercises 61–66, find all values of x satisfying the given conditions. y1 = (2x - 1)/(x^2 + 2x - 8), y2 = 2/(x + 4), y3 = 1/(x - 2), and y1 + y2 = y3.314views
Textbook QuestionIn Exercises 67–70, find all values of x such that y = 0. y = 2[3x - (4x - 6)] - 5(x - 6)720views
Textbook QuestionIn Exercises 67–70, find all values of x such that y = 0. y = (x + 6)/(3x - 12) - 5/(x - 4) - 2/3370views
Textbook QuestionIn Exercises 67–70, find all values of x such that y = 0. y = 1/(5x + 5) - 3/(x + 1) + 7/5321views
Textbook QuestionIn Exercises 71–78, solve each equation. Then determine whether the equation is an identity, a conditional equation, or an inconsistent equation. 4x + 7 = 7(x + 1) - 3x514views
Textbook QuestionIn Exercises 71–78, solve each equation. Then determine whether the equation is an identity, a conditional equation, or an inconsistent equation. 4(x + 5) = 21 + 4x309views
Textbook QuestionExercises 73–75 will help you prepare for the material covered in the next section. Simplify: √18 - √8270views
Textbook QuestionExercises 73–75 will help you prepare for the material covered in the next section. Rationalize the denominator: (7 + 4√2)/(2 - 5√2).266views
Textbook QuestionIn Exercises 71–78, solve each equation. Then determine whether the equation is an identity, a conditional equation, or an inconsistent equation. 10x + 3 = 8x + 3238views
Textbook QuestionIn Exercises 71–78, solve each equation. Then determine whether the equation is an identity, a conditional equation, or an inconsistent equation. 5x + 7 = 2x + 7224views
Textbook QuestionThe equations in Exercises 79–90 combine the types of equations we have discussed in this section. Solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 4/(x - 2) + 3/(x + 5) = 7/(x + 5)(x - 2)329views
Textbook QuestionThe equations in Exercises 79–90 combine the types of equations we have discussed in this section. Solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 4x/(x + 3) - 12/(x - 3) = (4x^2 + 36)/(x^2 - 9)248views
Textbook QuestionThe equations in Exercises 79–90 combine the types of equations we have discussed in this section. Solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 4/(x^2 + 3x - 10) - 1/(x^2 + x - 6) = 3/(x^2 - x - 12)229views
Textbook QuestionRetaining the Concepts. Solve and determine whether 8(x - 3) + 4 = 8x - 21 is an identity, a conditional equation, or an inconsistent equation.224views
Textbook QuestionEvaluate x^2 - x for the value of x satisfying 4(x - 2) + 2 = 4x - 2(2 - x).464views
Textbook QuestionIn Exercises 99–106, solve each equation. 5 - 12x = 8 - 7x - [6 ÷ 3(2 + 5^3) + 5x]274views
Textbook QuestionIn Exercises 99–106, solve each equation. 4x + 13 - {2x - [4(x - 3) - 5]} = 2(x - 6)213views
Textbook QuestionAfter a 30% price reduction, you purchase a 50″ 4K UHD TV for $245. What was the television's price before the reduction?28views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? A = 2lw + 2lh + 2wh for h102views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? S = C/(1 - r) for r31views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? S = P + Prt for r71views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? E = mc^2 for m96views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? V = (1/3)Bh for B67views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? A = (1/2)bh for b106views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? D = RT for R91views
Textbook QuestionA job pays an annual salary of $57,900, which includes a holiday bonus of $1500. If paychecks are issued twice a month, what is the gross amount for each paycheck?63views
Textbook QuestionFor an international telephone call, a telephone company charges $0.43 for the first minute, $0.32 for each additional minute, and a $2.10 service charge. If the cost of a call is $5.73, how long did the person talk?68views
Textbook QuestionA repair bill on a sailboat came to $2356, including $826 for parts and the remainder for labor. If the cost of labor is $90 per hour, how many hours of labor did it take to repair the sailboat?68views
Textbook QuestionAn automobile repair shop charged a customer $1182, listing $357 for parts and the remainder for labor. If the cost of labor is $75 per hour, how many hours of labor did it take to repair the car?123views
Textbook QuestionThe length of a rectangular pool is 6 meters less than twice the width. If the pool's perimeter is 126 meters, what are its dimensions?154views
Textbook QuestionThe length of the rectangular tennis court at Wimbledon is 6 feet longer than twice the width. If the court's perimeter is 228 feet, what are the court's dimensions?127views
Textbook QuestionA rectangular soccer field is twice as long as it is wide. If the perimeter of the soccer field is 300 yards, what are its dimensions?104views
Textbook QuestionA rectangular swimming pool is three times as long as it is wide. If the perimeter of the pool is 320 feet, what are its dimensions?162views
Textbook QuestionExercises 19–20 involve markup, the amount added to the dealer's cost of an item to arrive at the selling price of that item. The selling price of a refrigerator is $1198. If the markup is 25% of the dealer's cost, what is the dealer's cost of the refrigerator?100views
Textbook QuestionIncluding a 17.4% hotel tax, your room in Chicago cost $287.63 per night. Find the nightly cost before the tax was added.84views
Textbook QuestionIncluding a 10.5% hotel tax, your room in San Diego cost $216.58 per night. Find the nightly cost before the tax was added.158views
Textbook QuestionAfter a 20% reduction, you purchase a television for $336. What was the television's price before the reduction?266views
Textbook QuestionAn electronic pass for a toll road costs $30. The toll is normally $5.00 but is reduced by 30% for people who have purchased the electronic pass. Determine the number of times the road must be used so that the total cost without the pass is the same as the total cost with the pass.68views
Textbook QuestionYou are choosing between two gyms. One gym offers membership for a fee of $40 plus a monthly fee of $25. The other offers membership for a fee of $15 plus a monthly fee of $30. After how many months will the total cost at each gym be the same? What will be the total cost for each gym?106views
Textbook QuestionExercises 141–143 will help you prepare for the material covered in the next section. If the width of a rectangle is represented by x and the length is represented by x + 200, write a simplified algebraic expression that models the rectangle's perimeter.54views
Textbook QuestionIn Exercises 45–47, solve each formula for the specified variable. T = (A-P)/Pr for P45views
Textbook QuestionIn Exercises 45–47, solve each formula for the specified variable. vt + gt^2 = s for g58views
Textbook QuestionIn Exercises 36–43, use the five-step strategy for solving word problems. The length of a rectangular field is 6 yards less than triple the width. If the perimeter of the field is 340 yards, what are its dimensions?106views
Textbook QuestionIn Exercises 36–43, use the five-step strategy for solving word problems. An apartment complex has offered you a move-in special of 30% off the first month's rent. If you pay $945 for the first month, what should you expect to pay for the second month when you must pay full price?85views
Textbook QuestionWork each problem. Elmer borrowed $3150 from his brother Julio to pay for books and tuition. He agreed to repay Julio in 6 months with simple annual interest at 4%. (a)How much will the interest amount to?40views
Textbook QuestionWork each problem. Levada borrows $30,900 from her bank to open a florist shop. She agrees to repay the money in 18 months with simple annual interest of 5.5%. (a)How much must she pay the bank in 18 months?47views
Textbook QuestionSolve each problem. How long will it take a car to travel 400 mi at an average rate of 50 mph?34views
Textbook QuestionSolve each problem. If a train travels at 80 mph for 15 min, what is the distance traveled?29views
Textbook QuestionSolve each problem. If a person invests $500 at 2% simple interest for 4 yr, how much interest is earned?32views
Textbook QuestionSolve each problem. If 120 L of an acid solution is 75% acid, how much pure acid is there in the mixture?29views
Textbook QuestionSolve each problem. Which one or more of the following cannot be a correct equation to solve a geometry problem, if x represents the length of a rectangle? (Hint: Solve each equation and consider the solution.) A. 2x+2(x- ) = 14 B. -2x+7(5-x) = 52 C. 5(x+2)+5x = 10 D. 2x+2(x-3) = 2240views
Textbook QuestionSolve each problem. See Example 1. Michael must build a rectangular storage shed. He wants the length to be 6 ft greater than the width, and the perimeter will be 44 ft. Find the length and the width of the shed.36views
Textbook QuestionSolve each problem. See Example 1. The length of a rectangular label is 2.5 cm less than twice the width. The perimeter is 40.6 cm. Find the width. (Side lengths in the figure are in centimeters.)39views
Textbook QuestionSolve each problem. See Example 1. The perimeter of a triangular plot of land is 2400 ft.The longest side is 200 ft less than twice the shortest. The middle side is 200 ft less than the longest side. Find the lengths of the three sides of the triangular plot.39views
Textbook QuestionSolve each problem. See Example 2. Elwyn averaged 50 mph traveling from Denver to Minneapolis. Returning by a different route that covered the same number of miles, he averaged 55 mph. What is the distance between the two cities to the nearest ten miles if his total traveling time was 32 hr?43views
Textbook QuestionSolve each problem. See Example 4. In planning her retirement, Kaya deposits some money at 2.5% interest, and twice as much money at 3%. Find the amount deposited at each rate if the total annual interest income is $850.28views
Textbook QuestionSolve each problem. See Example 4. Zhu inherited $200,000 from her grandmother. She first gave 30% to her favorite charity. She invested some of the rest at 1.5% and some at 4%, earning $4350 interest per year. How much did she invest at each rate?40views
Textbook QuestionSolve each problem. See Examples 5 and 6. Formaldehyde is an indoor air pollutant formerly found in plywood, foam insulation, and carpeting. When concentrations in the air reach 33 micrograms per cubic foot (μg/ft^3), eye irritation can occur. One square foot of new plywood could emit 140 μg per hr. (Data from A. Hines, Indoor Air Quality & Control.) A room has 100 ft^2 of new plywood flooring. Find a linear equation F that computes the amount of formaldehyde, in micrograms, emitted in x hours.44views
Textbook QuestionSolve each problem. See Examples 5 and 6. Formaldehyde is an indoor air pollutant formerly found in plywood, foam insulation, and carpeting. When concentrations in the air reach 33 micrograms per cubic foot (μg/ft^3), eye irritation can occur. One square foot of new plywood could emit 140 μg per hr. (Data from A. Hines, Indoor Air Quality & Control.) The room contains 800 ft^3 of air and has no ventilation. Determine how long it would take for concentrations to reach 33 μg/ft^3. (Round to the nearest tenth.)34views
Textbook QuestionSolve each problem. Dimensions of a Square. If the length of each side of a square is decreased by 4 in., the perimeter of the new square is 10 in. more than half the perimeter of the original square. What are the dimensions of the original square?30views
Textbook QuestionSolve each problem. Speed of a PlaneMary Lynn left by plane to visit her mother in Louisiana, 420 km away. Fifteen minutes later, her mother left to meet her at the airport. She drove the 20 km to the airport at 40 km per hr, arriving just as the plane taxied in. What was the speed of the plane?50views
Textbook QuestionSolve each problem. (Modeling) Lead IntakeAs directed by the 'Safe Drinking Water Act' of December 1974, the EPA proposed a maximum lead level in public drinking water of 0.05 mg per liter. This standard assumed an individual consumption of two liters of water per day. (a)If EPA guidelines are followed, write an equation that models the maximum amount of lead A ingested in x years. Assume that there are 365.25 days in a year.34views
Textbook QuestionSolve each problem. (Modeling) Online Retail SalesProjected retail e-commerce sales (in billions of dollars) for the years 2016–2022 can be modeled by the equation y=52.304x+396.80, where x=0 corresponds to 2016, x=1 corresponds to 2017, and so on. Based on this model, find projected retail e-commerce sales in 2022 to the nearest tenth of a billion. (Data from www.statista.com)32views
Textbook QuestionIn the metric system of weights and measures, temperature is measured in degrees Celsius (°C) instead of degrees Fahrenheit (°F). To convert between the two systems, we use the equations. C =5/9 (F-32) and F = 9/5C+32. In each exercise, convert to the other system. Round answers to the nearest tenth of a degree if necessary. 20°C10views
Textbook QuestionIn the metric system of weights and measures, temperature is measured in degrees Celsius (°C) instead of degrees Fahrenheit (°F). To convert between the two systems, we use the equations. C =5/9 (F-32) and F = 9/5C+32. In each exercise, convert to the other system. Round answers to the nearest tenth of a degree if necessary. 50°F15views
Textbook QuestionWork each problem. Round to the nearest tenth of a degree if necessary. Temperature of VenusVenus is the hottest planet, with a surface temperature of 867°F. What is this temperature in degrees Celsius? (Data from The World Almanac and Book of Facts.)6views
Textbook QuestionWork each problem. Round to the nearest tenth of a degree if necessary. Temperature in South CarolinaA record high temperature of 113°F was recorded for the state of South Carolina on June 29, 2012. What is the corresponding Celsius temperature? (Data from U.S. National Oceanic and Atmospheric Administration.)7views
Textbook QuestionIn the metric system of weights and measures, temperature is measured in degrees Celsius (°C) instead of degrees Fahrenheit (°F). To convert between the two systems, we use the equations. C =5/9 (F-32) and F = 9/5C+32. In each exercise, convert to the other system. Round answers to the nearest tenth of a degree if necessary. 100°F20views
Textbook QuestionSolve each problem. See Example 2. Two planes leave Los Angeles at the same time. One heads south to San Diego, while the other heads north to San Francisco. The San Diego plane flies 50 mph slower than the San Francisco plane. In 1/2 hr, the planes are 275 mi apart. What are their speeds?10views
Textbook QuestionSolve each problem. See Example 2. In the Apple Hill Fun Run, Mary runs at 7 mph, Janet at 5 mph. If they start at the same time, how long will it be before they are 1.5 mi apart?9views
Textbook QuestionSolve each problem. See Example 2. At the 2008 Summer Olympics in Beijing, Usain Bolt set a new Olympic and world record in the 100-m dash with a time of 9.69 sec. If this pace could be maintained for an entire 26-mi marathon, what would his time be? How would this time compare to the fastest time for a marathon, which is 2 hr, 3 min, 23 sec, set in 2013? (Hint: 1 m ≈ 3.281 ft.) (Data from Sports Illustrated Almanac.)13views
Textbook QuestionSolve each problem. See Example 2. Callie took 20 min to drive her boat upstream to water-ski at her favorite spot. Coming back later in the day, at the same boat speed, took her 15 min. If the current in that part of the river is 5 km per hr, what was her boat speed?13views
Textbook QuestionSolve each problem. See Example 3. How many gallons of a 5% acid solution must be mixed with 5 gal of a 10% solution to obtain a 7% solution?6views
Textbook QuestionSolve each problem. See Example 3. Aryan wishes to strengthen a mixture from 10% alcohol to 30% alcohol. How much pure alcohol should be added to 7 L of the 10% mixture?9views
Textbook QuestionSolve each problem. See Example 3. How much water should be added to 8 mL of 6% saline solution to reduce the concentration to 4%?9views
Textbook QuestionSolve each problem. See Example 4. Cody sells some property for $240,000. The money will be paid off in two ways: a short-term note at 2% interest and a long-term note at 2.5%. Find the amount of each note if the total annual interest paid is $5500.14views
Textbook QuestionAfter a 20% reduction, a 42-inch HDTV sold for $256. What was the price before the reduction?9views
Textbook QuestionIn Exercises 137–140, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. The equation |x| = - 6 is equivalent to x = 6 or x = - 6.68views
Textbook QuestionIn Exercises 91–100, find all values of x satisfying the given conditions. y = |2 - 3x| and y = 13113views
Textbook QuestionThe rule for rewriting an absolute value equation without absolute value bars can be extended to equations with two sets of absolute value bars: If u and v represent algebraic expressions, then |u| = |v| is equivalent to u = v or u = - v. Use this to solve the equations in Exercises 77–84. |4x - 3| = |4x - 5|118views
Textbook QuestionThe rule for rewriting an absolute value equation without absolute value bars can be extended to equations with two sets of absolute value bars: If u and v represent algebraic expressions, then |u| = |v| is equivalent to u = v or u = - v. Use this to solve the equations in Exercises 77–84. |3x - 1| = |x + 5|89views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |2x - 1| + 3 = 3128views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |x + 1| + 5 = 3107views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. 2|4 - (5/2)x| + 6 = 18128views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. 7|5x| + 2 = 16126views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. 2|3x - 2| = 14102views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |2x - 1| = 5108views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |x - 2| = 7114views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |x| = 848views
Textbook QuestionSolve each radical equation in Exercises 11–30. Check all proposed solutions. √(x + 8) - √(x - 4) = 253views
Textbook QuestionSolve each equation in Exercises 96–102 by the method of your choice. -4|x+1| + 12 = 047views
Textbook QuestionMatch each equation in Column I with the correct first step for solving it in Column II. √(x+5) = 761views1rank