Problem 1
Which of the following categories includes all others in the list? a. disaccharide b. polysaccharide c. starch d. carbohydrate
Problem 2
The enzyme amylase can break glycosidic linkages between glucose monomers only if the monomers are in the α form. Which of the following could amylase break down? a. glycogen, starch, and amylopectin b. glycogen and cellulose c. cellulose and chitin d. starch, chitin, and cellulose
Problem 3
Which of the following is true of unsaturated fats? a. They are more common in animals than in plants. b. They have double bonds in their fatty acid chains. c. They generally solidify at room temperature. d. They contain more hydrogen than do saturated fats having the same number of carbon atoms.
Problem 4
The structural level of a protein least affected by a disruption in hydrogen bonding is the a. primary level. b. secondary level. c. tertiary level. d. quaternary level.
Problem 5
Enzymes that break down DNA catalyze the hydrolysis of the covalent bonds that join nucleotides together. What would happen to DNA molecules treated with these enzymes? a. The two strands of the double helix would separate. b. The phosphodiester linkages of the polynucleotide backbone would be broken. c. The pyrimidines would be separated from the deoxyribose sugars. d. All bases would be separated from the deoxyribose sugars.
Problem 6
The molecular formula for glucose is C6H12O6. What would be the molecular formula for a polymer made by linking ten glucose molecules together by dehydration reactions? a. C60H120O60 b. C60H102O51 c. C60H100O50 d. C60H111O51
Problem 7
Which of the following pairs of base sequences could form a short stretch of a normal double helix of DNA? a. 5′-AGCT-3′ with 5′-TCGA-3′ b. 5′-GCGC-3′ with 5′-TATA-3′ c. 5′-ATGC-3′ with 5′-GCAT-3′ d. All of these pairs are correct.
Problem 8
Construct a table that organizes the following terms, and label the columns and rows.
Problem 9
DRAW IT Copy the polynucleotide strand in Figure 5.23a and label the bases G, T, C, and T, starting from the 5′ end. Assuming this is a DNA polynucleotide, now draw the complementary strand, using the same symbols for phosphates (circles), sugars (pentagons), and bases. Label the bases. Draw arrows showing the 5'→3' direction of each strand. Use the arrows to make sure the second strand is antiparallel to the first. Hint: After you draw the first strand vertically, turn the paper upside down; it is easier to draw the second strand from the 5′ toward the 3′ direction as you go from top to bottom.
Ch. 5 - The Structure and Function of Large Biological Molecules
Back