05:53Parametric Equations Introduction, Eliminating The Paremeter t, Graphing Plane Curves, PrecalculusThe Organic Chemistry Tutor415views
Multiple ChoiceGraph the plane curve formed by the parametric equations and indicate its orientation. x(t)=−t+1x\left(t\right)=-t+1; y(t)=t2y\left(t\right)=t^2−2≤t≤2-2\le t\le2 69views
Multiple ChoiceGraph the plane curve formed by the parametric equations and indicate its orientation.x(t)=2t−1x(t)=2t-1; y(t)=2ty(t)=2\sqrt{t}t≥0t≥0 82views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 3 − 5t, y = 4 + 2t; t = 1198views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 7 − 4t, y = 5 + 6t; t = 1138views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = t² + 1, y = 5 − t³; t = 2206views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = t² + 3, y = 6 − t³; t = 2125views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 4 + 2 cos t, y = 3 + 5 sin t; t = π/2146views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 2 + 3 cos t, y = 4 + 2 sin t; t = π143views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = (60 cos 30°)t, y = 5 + (60 sin 30°)t − 16t²; t = 2142views
Textbook QuestionIn Exercises 9–20, use point plotting to graph the plane curve described by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. x = t − 2, y = 2t + 1; −2 ≤ t ≤ 3163views
Textbook QuestionIn Exercises 15–16, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. _ x = √t , y = t + 1; −∞ < t < ∞187views
Textbook QuestionIn Exercises 9–20, use point plotting to graph the plane curve described by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. x = 2t, y = |t − 1|; −∞ < t < ∞146views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = t, y = 2t156views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. _ x = √t, y = t − 1147views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = 1 + 3 cos t, y = 2 + 3 sin t; 0 ≤ t < 2π192views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = 2ᵗ, y = 2⁻ᵗ; t ≥ 0147views
Textbook QuestionIn Exercises 53–56, find two different sets of parametric equations for each rectangular equation. y = 4x − 3156views
Textbook QuestionIn Exercises 53–56, find two different sets of parametric equations for each rectangular equation. y = x² + 4156views
Textbook QuestionIn Exercises 57–58, the parametric equations of four plane curves are given. Graph each plane curve and determine how they differ from each other. x = t and y = t² − 4189views
Textbook QuestionIn Exercises 59–62, sketch the plane curve represented by the given parametric equations. Then use interval notation to give each relation's domain and range. x = t² + t + 1, y = 2t150views
Textbook QuestionIn Exercises 71–76, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. x = 2t − 1, y = 1 − t; −∞ < t < ∞150views
Textbook QuestionIn Exercises 71–76, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. x = 3 + 2 cos t, y = 1+2 sin t; 0 ≤ t < 2π173views