05:53Parametric Equations Introduction, Eliminating The Paremeter t, Graphing Plane Curves, PrecalculusThe Organic Chemistry Tutor419views
Multiple ChoiceGraph the plane curve formed by the parametric equations and indicate its orientation. x(t)=−t+1x\left(t\right)=-t+1; y(t)=t2y\left(t\right)=t^2−2≤t≤2-2\le t\le2 70views
Multiple ChoiceGraph the plane curve formed by the parametric equations and indicate its orientation.x(t)=2t−1x(t)=2t-1; y(t)=2ty(t)=2\sqrt{t}t≥0t≥0 83views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 3 − 5t, y = 4 + 2t; t = 1200views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 7 − 4t, y = 5 + 6t; t = 1139views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = t² + 1, y = 5 − t³; t = 2207views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = t² + 3, y = 6 − t³; t = 2128views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 4 + 2 cos t, y = 3 + 5 sin t; t = π/2147views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 2 + 3 cos t, y = 4 + 2 sin t; t = π144views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = (60 cos 30°)t, y = 5 + (60 sin 30°)t − 16t²; t = 2144views
Textbook QuestionIn Exercises 9–20, use point plotting to graph the plane curve described by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. x = t − 2, y = 2t + 1; −2 ≤ t ≤ 3165views
Textbook QuestionIn Exercises 15–16, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. _ x = √t , y = t + 1; −∞ < t < ∞189views
Textbook QuestionIn Exercises 9–20, use point plotting to graph the plane curve described by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. x = 2t, y = |t − 1|; −∞ < t < ∞147views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = t, y = 2t158views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. _ x = √t, y = t − 1148views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = 1 + 3 cos t, y = 2 + 3 sin t; 0 ≤ t < 2π194views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = 2ᵗ, y = 2⁻ᵗ; t ≥ 0149views
Textbook QuestionIn Exercises 53–56, find two different sets of parametric equations for each rectangular equation. y = 4x − 3158views
Textbook QuestionIn Exercises 53–56, find two different sets of parametric equations for each rectangular equation. y = x² + 4158views
Textbook QuestionIn Exercises 57–58, the parametric equations of four plane curves are given. Graph each plane curve and determine how they differ from each other. x = t and y = t² − 4190views
Textbook QuestionIn Exercises 59–62, sketch the plane curve represented by the given parametric equations. Then use interval notation to give each relation's domain and range. x = t² + t + 1, y = 2t152views
Textbook QuestionIn Exercises 71–76, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. x = 2t − 1, y = 1 − t; −∞ < t < ∞152views
Textbook QuestionIn Exercises 71–76, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. x = 3 + 2 cos t, y = 1+2 sin t; 0 ≤ t < 2π175views