05:53Parametric Equations Introduction, Eliminating The Paremeter t, Graphing Plane Curves, PrecalculusThe Organic Chemistry Tutor430views
Multiple ChoiceGraph the plane curve formed by the parametric equations and indicate its orientation. x(t)=−t+1x\left(t\right)=-t+1; y(t)=t2y\left(t\right)=t^2−2≤t≤2-2\le t\le2 74views
Multiple ChoiceGraph the plane curve formed by the parametric equations and indicate its orientation.x(t)=2t−1x(t)=2t-1; y(t)=2ty(t)=2\sqrt{t}t≥0t≥0 88views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 3 − 5t, y = 4 + 2t; t = 1210views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 7 − 4t, y = 5 + 6t; t = 1145views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = t² + 1, y = 5 − t³; t = 2213views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = t² + 3, y = 6 − t³; t = 2133views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 4 + 2 cos t, y = 3 + 5 sin t; t = π/2151views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = 2 + 3 cos t, y = 4 + 2 sin t; t = π153views
Textbook QuestionIn Exercises 1–8, parametric equations and a value for the parameter t are given. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t. x = (60 cos 30°)t, y = 5 + (60 sin 30°)t − 16t²; t = 2149views
Textbook QuestionIn Exercises 9–20, use point plotting to graph the plane curve described by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. x = t − 2, y = 2t + 1; −2 ≤ t ≤ 3171views
Textbook QuestionIn Exercises 15–16, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. _ x = √t , y = t + 1; −∞ < t < ∞195views
Textbook QuestionIn Exercises 9–20, use point plotting to graph the plane curve described by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. x = 2t, y = |t − 1|; −∞ < t < ∞152views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = t, y = 2t163views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. _ x = √t, y = t − 1150views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = 1 + 3 cos t, y = 2 + 3 sin t; 0 ≤ t < 2π202views
Textbook QuestionIn Exercises 21–40, eliminate the parameter t. Then use the rectangular equation to sketch the plane curve represented by the given parametric equations. Use arrows to show the orientation of the curve corresponding to increasing values of t. (If an interval for t is not specified, assume that −∞ < t < ∞. x = 2ᵗ, y = 2⁻ᵗ; t ≥ 0156views
Textbook QuestionIn Exercises 53–56, find two different sets of parametric equations for each rectangular equation. y = 4x − 3163views
Textbook QuestionIn Exercises 53–56, find two different sets of parametric equations for each rectangular equation. y = x² + 4164views
Textbook QuestionIn Exercises 57–58, the parametric equations of four plane curves are given. Graph each plane curve and determine how they differ from each other. x = t and y = t² − 4193views
Textbook QuestionIn Exercises 59–62, sketch the plane curve represented by the given parametric equations. Then use interval notation to give each relation's domain and range. x = t² + t + 1, y = 2t155views
Textbook QuestionIn Exercises 71–76, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. x = 2t − 1, y = 1 − t; −∞ < t < ∞156views
Textbook QuestionIn Exercises 71–76, eliminate the parameter and graph the plane curve represented by the parametric equations. Use arrows to show the orientation of each plane curve. x = 3 + 2 cos t, y = 1+2 sin t; 0 ≤ t < 2π180views