Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles39m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
3. Unit Circle
Defining the Unit Circle
Problem 3.37c
Textbook Question
Textbook QuestionFind each exact function value.
sin ( ―5π/6)
Verified Solution
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
0m:0sPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Unit Circle
The unit circle is a circle with a radius of one centered at the origin of a coordinate plane. It is fundamental in trigonometry as it provides a geometric representation of the sine, cosine, and tangent functions. The angles measured in radians correspond to points on the circle, allowing for the determination of exact function values for various angles.
Recommended video:
06:11
Introduction to the Unit Circle
Reference Angles
A reference angle is the acute angle formed by the terminal side of a given angle and the x-axis. For angles in the second and third quadrants, the reference angle helps in finding the sine, cosine, and tangent values by relating them to the corresponding angles in the first quadrant. Understanding reference angles is crucial for evaluating trigonometric functions for angles greater than π or less than -π.
Recommended video:
5:31
Reference Angles on the Unit Circle
Sine Function
The sine function, denoted as sin(θ), represents the ratio of the length of the opposite side to the hypotenuse in a right triangle. On the unit circle, it corresponds to the y-coordinate of a point at a given angle θ. Knowing the properties of the sine function, including its periodicity and symmetry, is essential for calculating exact values for angles like -5π/6.
Recommended video:
5:53
Graph of Sine and Cosine Function
Watch next
Master Introduction to the Unit Circle with a bite sized video explanation from Callie Rethman
Start learningRelated Videos
Related Practice