Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles40m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
5. Inverse Trigonometric Functions and Basic Trigonometric Equations
Evaluate Composite Trig Functions
Multiple Choice
Evaluate the expression.
sin−1(cos32π)
A
6π
B
65π
C
3π
D
−6π
0 Comments
Verified step by step guidance1
First, understand that the expression involves the inverse sine function, \( \sin^{-1} \), which returns an angle whose sine is the given value. The range of \( \sin^{-1} \) is \([-\frac{\pi}{2}, \frac{\pi}{2}]\).
Next, evaluate \( \cos\left(\frac{2\pi}{3}\right) \). The angle \( \frac{2\pi}{3} \) is in the second quadrant where cosine is negative. Use the reference angle \( \frac{\pi}{3} \) to find \( \cos\left(\frac{2\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2} \).
Now, substitute \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \) into the inverse sine function: \( \sin^{-1}\left(-\frac{1}{2}\right) \).
Determine the angle whose sine is \(-\frac{1}{2}\) within the range \([-\frac{\pi}{2}, \frac{\pi}{2}]\). The angle that satisfies this is \(-\frac{\pi}{6}\), since \( \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \).
Thus, the expression \( \sin^{-1}\left(\cos\frac{2\pi}{3}\right) \) evaluates to \(-\frac{\pi}{6}\).
Related Videos
Related Practice
Textbook Question
In Exercises 29–51, find the exact value of each expression. Do not use a calculator.tan[sin⁻¹ (− 1/2)]
716
views

