Ch 36: Diffraction
Chapter 35, Problem 35
Coherent light of frequency 6.32 * 1014 Hz passes through two thin slits and falls on a screen 85.0 cm away. You observe that the third bright fringe occurs at ±3.11 cm on either side of the central bright fringe. (a) How far apart are the two slits? (b) At what distance from the central bright fringe will the third dark fringe occur?
Verified Solution
Video duration:
12mThis video solution was recommended by our tutors as helpful for the problem above.
425
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Coherent light with wavelength 450 nm falls on a pair of
slits. On a screen 1.80 m away, the distance between dark fringes
is 3.90 mm. What is the slit separation?
513
views
Textbook Question
Two slits spaced 0.450 mm apart are placed 75.0 cm from a screen. What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 500 nm?
323
views
Textbook Question
In a two-slit interference pattern, the intensity at the peak of the central maximum is I0. (a) At a point in the pattern where the phase difference between the waves from the two slits is 60.0°, what is the intensity?
270
views
Textbook Question
Two slits spaced 0.260 mm apart are 0.900 m from a screen and illuminated by coherent light of wavelength 660 nm. The intensity at the center of the central maximum 1u = 0°2 is I0. What is the distance on the screen from the center of the central maximum (a) to the first minimum
294
views
Textbook Question
Two slits spaced 0.260 mm apart are 0.900 m from a screen and illuminated by coherent light of wavelength 660 nm. The intensity at the center of the central maximum 1u = 0°2 is I0. What is the distance on the screen from the center of the central maximum (b) to the point where the intensity has fallen to I0>2?
327
views