Ch 24: Capacitance and Dielectrics
Chapter 24, Problem 24
You have two identical capacitors and an external potential source. (a) Compare the total energy stored in the capacitors when they are connected to the applied potential in series and in parallel. (b) Compare the maximum amount of charge stored in each case. (c) Energy storage in a capacitor can be limited by the maximum electric field between the plates. What is the ratio of the electric field for the series and parallel combinations?
Verified Solution
Video duration:
5mThis video solution was recommended by our tutors as helpful for the problem above.
1059
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
In Fig. E24.20 , C1 = 6.00 uF, C2 = 3.00 uF, and C3 = 5.00 uF. The capacitor network is connected to an applied potential Vab. After the charges on the capacitors have reached their final values, the charge on C2 is 30.0 mC. (a) What are the charges on capacitors C1 and C3? (b) What is the applied voltage Vab?
2502
views
Textbook Question
A 5.80-uF, parallel-plate, air capacitor has a plate separation of 5.00 mm and is charged to a potential difference of 400 V. Calculate the energy density in the region between the plates, in units of J/m^3.
496
views
Textbook Question
A parallel-plate air capacitor has a capacitance of 920 pF. The charge on each plate is 3.90 uC. (a) What is the potential difference between the plates? (b) If the charge is kept constant, what will be the potential difference if the plate separation is doubled? (c) How much work is required to double the separation?
1242
views
Textbook Question
A parallel-plate capacitor has capacitance C0 = 8.00 pF when there is air between the plates. The separation between the plates is 1.50 mm. (a) What is the maximum magnitude of charge Q that can be placed on each plate if the electric field in the region between the plates is not to exceed 3.00x10^4 V/m? (b) A dielectric with K = 2.70 is inserted between the plates of the capacitor, completely filling the volume between the plates. Now what is the maximum magnitude of charge on each plate if the electric field between the plates is not to exceed 3.00x10^4 V/m?
819
views
1
rank
Textbook Question
A constant potential difference of 12 V is maintained between the terminals of a 0.25-uF, parallel-plate, air capacitor. (a) A sheet of Mylar is inserted between the plates of the capacitor, completely filling the space between the plates. When this is done, how much additional charge flows onto the positive plate of the capacitor (see Table 24.1) ? (b) What is the total induced charge on either face of the Mylar sheet? (c) What effect does the Mylar sheet have on the electric field between the plates? Explain how you can reconcile this with the increase in charge on the plates, which acts to increase the electric field.
948
views
Textbook Question
Polystyrene has dielectric constant 2.6 and dielectric strength 2.0x10^7 V/m. A piece of polystyrene is used as a dielectric in a parallel-plate capacitor, filling the volume between the plates. (a) When the electric field between the plates is 80% of the dielectric strength, what is the energy density of the stored? (b) When the capacitor is connected to a battery with voltage 500.0 V, the electric field between the plates is 80% of the dielectric strength. What is the area of each plate if the capacitor stores 0.200 mJ of energy under these conditions?
2009
views