Ch 22: Gauss' Law
Chapter 22, Problem 22
A flat sheet of paper of area 0.250 m2 is oriented so that the normal to the sheet is at an angle of 60° to a uniform electric field of magnitude 14 N/C. (c) For what angle φ between the normal to the sheet and the electric field is the magnitude of the flux through the sheet (i) largest and (ii) smallest? Explain your answers.
Verified Solution
Video duration:
4mThis video solution was recommended by our tutors as helpful for the problem above.
409
views
1
rank
Was this helpful?
Video transcript
Related Practice
Textbook Question
A hollow, conducting sphere with an outer radius of 0.250 m and an inner radius of 0.200 m has a uniform surface charge density of +6.37×10−6 C/m2. A charge of −0.500 μC is now introduced at the center of the cavity inside the sphere. (b) Calculate the strength of the electric field just outside the sphere?
1666
views
Textbook Question
A hollow, conducting sphere with an outer radius of 0.250 m and an inner radius of 0.200 m has a uniform surface charge density of +6.37×10−6 C/m2. A charge of −0.500 μC is now introduced at the center of the cavity inside the sphere. (c) What is the electric flux through a spherical surface just inside the inner surface of the sphere?
493
views
Textbook Question
A flat sheet of paper of area 0.250 m2 is oriented so that the normal to the sheet is at an angle of 60° to a uniform electric field of magnitude 14 N/C.
(a) Find the magnitude of the electric flux through the sheet.
(b) Does the answer to part (a) depend on the shape of the sheet? Why or why not?
1407
views
2
rank
Textbook Question
A hemispherical surface with radius r in a region of uniform electric field E→ has its axis aligned parallel to the direction of the field. Calculate the flux through the surface.
1169
views
Textbook Question
You measure an electric field of 1.25×106 N/C at a distance of 0.150 m from a point charge. There is no other source of electric field in the region other than this point charge. (a) What is the electric flux through the surface of a sphere that has this charge at its center and that has radius 0.150 m? (b) What is the magnitude of this charge?
2051
views
Textbook Question
Charge q is distributed uniformly throughout the volume of an insulating sphere of radius R = 4.00 cm. At a distance of r = 8.00 cm from the center of the sphere, the electric field due to the charge distribution has magnitude E = 940 N/C. What are (a) the volume charge density for the sphere?
2146
views
1
rank
1
comments