Ch 21: Electric Charge and Electric Field
Chapter 21, Problem 21
Electric Field of the Earth. The earth has a net electric charge that causes a field at points near its surface equal to 150 N/C and directed in toward the center of the earth. (a) What magnitude and sign of charge would a 60-kg human have to acquire to overcome his or her weight by the force exerted by the earth's electric field?
Verified Solution
Video duration:
6mThis video solution was recommended by our tutors as helpful for the problem above.
942
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A +8.75-mC point charge is glued down on a horizontal frictionless table. It is tied to a -6.50-mC point charge by a light, nonconducting 2.50-cm wire. A uniform electric field of magnitude 1.85 * 10^8 N/C is directed parallel to the wire, as shown in Fig. E21.34. (a) Find the tension in the wire.
448
views
1
rank
Textbook Question
A +8.75-mC point charge is glued down on a horizontal frictionless table. It is tied to a -6.50-mC point charge by a light, nonconducting 2.50-cm wire. A uniform electric field of magnitude 1.85 * 10^8 N/C is directed parallel to the wire, as shown in Fig. E21.34. (b) What would the tension be if both charges were negative?
1242
views
Textbook Question
Two positive point charges q are placed on the x-axis, one at x = a and one at x = -a. (a) Find the magnitude and direction of the electric field at x = 0.
1245
views
Textbook Question
(a) Calculate the magnitude and direction (relative to the +x-axis) of the electric field in Example 21.6.
Example 21.6: A point charge q = -8.0 nC is located at the origin. Find the electric-field vector at the field point x = 1.2 m, y = -1.6 m.
520
views
Textbook Question
CP A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 3.20 * 10^-6 s. (a) Find the magnitude of the electric field.
1663
views
Textbook Question
CP A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 3.20 * 10^-6 s. (b) Find the speed of the proton when it strikes the negatively charged plate.
339
views