Ch 21: Electric Charge and Electric Field
Chapter 21, Problem 21
CP A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 3.20 * 10^-6 s. (b) Find the speed of the proton when it strikes the negatively charged plate.
Verified Solution
Video duration:
5mThis video solution was recommended by our tutors as helpful for the problem above.
339
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Electric Field of the Earth. The earth has a net electric charge that causes a field at points near its surface equal to 150 N/C and directed in toward the center of the earth. (a) What magnitude and sign of charge would a 60-kg human have to acquire to overcome his or her weight by the force exerted by the earth's electric field?
942
views
Textbook Question
(a) Calculate the magnitude and direction (relative to the +x-axis) of the electric field in Example 21.6.
Example 21.6: A point charge q = -8.0 nC is located at the origin. Find the electric-field vector at the field point x = 1.2 m, y = -1.6 m.
520
views
Textbook Question
CP A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 3.20 * 10^-6 s. (a) Find the magnitude of the electric field.
1663
views
Textbook Question
A -4.00-nC point charge is at the origin, and a second -5.00-nC point charge is on the x-axis at x = 0.800 m. (a) Find the electric field (magnitude and direction) at each of the following points on the x-axis: (i) x = 0.200 m; (ii) x = 1.20 m; (iii) x = -0.200 m. (b) Find the net electric force that the two charges would exert on an electron placed at each point in part (a).
1265
views
Textbook Question
A -4.00-nC point charge is at the origin, and a second -5.00-nC point charge is on the x-axis at x = 0.800 m. (a) Find the electric field (magnitude and direction) at each of the following points on the x-axis: (i) x = 0.200 m; (ii) x = 1.20 m; (iii) x = -0.200 m. (b) Find the net electric force that the two charges would exert on an electron placed at each point in part (a).
1999
views
Textbook Question
A point charge q1 = -4.00 nC is at the point x = 0.600 m, y = 0.800 m, and a second point charge q2 = +6.00 nC is at the point x = 0.600 m, y = 0. Calculate the magnitude and direction of the net electric field at the origin due to these two point charges.
3560
views