Ch 19: The First Law of Thermodynamics
Chapter 19, Problem 19
An ideal gas is taken from a to b on the pV-diagram shown in Fig. E19.15. During this process, 700 J of heat is added and the pressure doubles.
(c) How does the internal energy of the gas at a compare to the internal energy at b? Be specific and explain.Verified Solution
Video duration:
2mThis video solution was recommended by our tutors as helpful for the problem above.
786
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Figure E19.8 shows a pV-diagram for an ideal gas in which its absolute temperature at b is one-fourth of its absolute temperature at a. (d) Did heat enter or leave the gas from a to b? How do you know?
773
views
Textbook Question
The process abc shown in the pV-diagram in Fig. E19.11 involves 0.0175 mol of an ideal gas. (a) What was the lowest temperature the gas reached in this process? Where did it occur?
1194
views
1
rank
Textbook Question
The pV-diagram in Fig. E19.13 shows a process abc involving 0.450 mol of an ideal gas. (c) How much heat had to be added during the process to increase the internal energy of the gas by 15,000 J?
928
views
Textbook Question
A cylinder contains 0.0100 mol of helium at T = 27.0°C. (a) How much heat is needed to raise the temperature to 67.0°C while keeping the volume constant? Draw a pV-diagram for this process. (b) If instead the pressure of the helium is kept constant, how much heat is needed to raise the temperature from 27.0°C to 67.0°C? Draw a pV-diagram for this process. (c) What accounts for the difference between your answers to parts (a) and (b)? In which case is more heat required? What becomes of the additional heat? (d) If the gas is ideal, what is the change in its internal energy in part (a)? In part (b)? How do the two answers compare? Why?
353
views
Textbook Question
A cylinder contains 0.0100 mol of helium at T = 27.0°C. (a) How much heat is needed to raise the temperature to 67.0°C while keeping the volume constant? Draw a pV-diagram for this process. (b) If instead the pressure of the helium is kept constant, how much heat is needed to raise the temperature from 27.0°C to 67.0°C? Draw a pV-diagram for this process. (c) What accounts for the difference between your answers to parts (a) and (b)? In which case is more heat required? What becomes of the additional heat? (d) If the gas is ideal, what is the change in its internal energy in part (a)? In part (b)? How do the two answers compare? Why?
327
views
Textbook Question
A cylinder contains 0.0100 mol of helium at T = 27.0°C. (a) How much heat is needed to raise the temperature to 67.0°C while keeping the volume constant? Draw a pV-diagram for this process. (b) If instead the pressure of the helium is kept constant, how much heat is needed to raise the temperature from 27.0°C to 67.0°C? Draw a pV-diagram for this process. (c) What accounts for the difference between your answers to parts (a) and (b)? In which case is more heat required? What becomes of the additional heat? (d) If the gas is ideal, what is the change in its internal energy in part (a)? In part (b)? How do the two answers compare? Why?
697
views