Ch 14: Periodic Motion
Chapter 14, Problem 14
Weighing Astronauts. This procedure has been used to 'weigh' astronauts in space: A 42.5-kg chair is attached to a spring and allowed to oscillate. When it is empty, the chair takes 1.30 s to make one complete vibration. But with an astronaut sitting in it, with her feet off the floor, the chair takes 2.54 s for one cycle. What is the mass of the astronaut?
Verified Solution
Video duration:
7mThis video solution was recommended by our tutors as helpful for the problem above.
821
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At t = 0 the spring is neither stretched nor compressed and the block is moving in the negative direction at 12.0 m/s. Find (a) the amplitude and (b) the phase angle. (c) Write an equation for the position as a function of time.
2109
views
2
rank
Textbook Question
The point of the needle of a sewing machine moves in SHM along the x-axis with a frequency of 2.5 Hz. At t = 0 its position and velocity components are +1.1 cm and -15 cm/s, respectively. (a) Find the acceleration component of the needle at t = 0.
659
views
Textbook Question
A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the amplitude of the motion is 0.090 m, it takes the block 2.70 s to travel from x = 0.090 m to x = -0.090 m. If the amplitude is doubled, to 0.180 m, how long does it take the block to travel (a) from x = 0.180 m to x = -0.180 m?
1639
views
Textbook Question
A 0.400-kg object undergoing SHM has ax = -1.80 m/s^2 when x = 0.300 m. What is the time for one oscillation?
784
views
1
rank
Textbook Question
A 0.500-kg mass on a spring has velocity as a function of time given by vx(t) = -(3.60 cm/s) sin[(4.71 rad/s)t - (pi/2)]. What are (a) the period; (b) the amplitude; (c) the maximum acceleration of the mass; (d) the force constant of the spring?
1452
views
Textbook Question
A 0.500-kg mass on a spring has velocity as a function of time given by vx(t) = -(3.60 cm/s) sin[(4.71 rad/s)t - (pi/2)]. What are (a) the period; (b) the amplitude; (c) the maximum acceleration of the mass; (d) the force constant of the spring?
737
views