Ch 14: Periodic Motion
Chapter 14, Problem 14
A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the amplitude of the motion is 0.090 m, it takes the block 2.70 s to travel from x = 0.090 m to x = -0.090 m. If the amplitude is doubled, to 0.180 m, how long does it take the block to travel (a) from x = 0.180 m to x = -0.180 m?
Verified Solution
Video duration:
4mThis video solution was recommended by our tutors as helpful for the problem above.
1639
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
In a physics lab, you attach a 0.200-kg air-track glider to the end of an ideal spring of negligible mass and start it oscillating. The elapsed time from when the glider first moves through the equilibrium point to the second time it moves through that point is 2.60 s. Find the spring's force constant.
1652
views
Textbook Question
A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At t = 0 the spring is neither stretched nor compressed and the block is moving in the negative direction at 12.0 m/s. Find (a) the amplitude and (b) the phase angle. (c) Write an equation for the position as a function of time.
2109
views
2
rank
Textbook Question
The point of the needle of a sewing machine moves in SHM along the x-axis with a frequency of 2.5 Hz. At t = 0 its position and velocity components are +1.1 cm and -15 cm/s, respectively. (a) Find the acceleration component of the needle at t = 0.
659
views
Textbook Question
Weighing Astronauts. This procedure has been used to 'weigh' astronauts in space: A 42.5-kg chair is attached to a spring and allowed to oscillate. When it is empty, the chair takes 1.30 s to make one complete vibration. But with an astronaut sitting in it, with her feet off the floor, the chair takes 2.54 s for one cycle. What is the mass of the astronaut?
821
views
Textbook Question
A 0.400-kg object undergoing SHM has ax = -1.80 m/s^2 when x = 0.300 m. What is the time for one oscillation?
784
views
1
rank
Textbook Question
A 0.500-kg mass on a spring has velocity as a function of time given by vx(t) = -(3.60 cm/s) sin[(4.71 rad/s)t - (pi/2)]. What are (a) the period; (b) the amplitude; (c) the maximum acceleration of the mass; (d) the force constant of the spring?
1452
views