Ch 10: Dynamics of Rotational Motion
Chapter 10, Problem 10
A 2.00-kg rock has a horizontal velocity of magnitude 12.0 m>s when it is at point P in Fig. E10.35.
(b) If the only force acting on the rock is its weight, what is the rate of change (magnitude and direction) of its angular momentum at this instant?Verified Solution
Video duration:
8mThis video solution was recommended by our tutors as helpful for the problem above.
1209
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Three forces are applied to a wheel of radius 0.350 m, as shown in Fig. E10.4. One force is perpendicular to the rim, one is tangent to it, and the other one makes a 40.0° angle with the radius. What is the net torque on the wheel due to these three forces for an axis perpendicular to the wheel and passing through its center?
1666
views
1
rank
1
comments
Textbook Question
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes over a frictionless pulley (Fig. E10.16). The pulley has the shape of a uniform solid disk of mass 2.00 kg and diameter 0.500 m. After the system is released, find (b) the acceleration of the box, and
4933
views
Textbook Question
A cord is wrapped around the rim of a solid uniform wheel 0.250 m in radius and of mass 9.20 kg. A steady horizontal pull of 40.0 N to the right is exerted on the cord, pulling it off tangentially from the wheel. The wheel is mounted on frictionless bearings on a horizontal axle through its center. (b) Find the magnitude and direction of the force that the axle exerts on the wheel.
2531
views
2
rank
Textbook Question
A 2.00-kg rock has a horizontal velocity of magnitude 12.0 m>s when it is at point P in Fig. E10.35. (a) At this instant, what are the magnitude and direction of its angular momentum relative to point O?
467
views
Textbook Question
The rotor (flywheel) of a toy gyroscope has mass 0.140 kg. Its moment of inertia about its axis is 1.20 * 10^-4 kg•m^2. The mass of the frame is 0.0250 kg. The gyroscope is supported on a single pivot (Fig. E10.51) with its center of mass a horizontal distance of 4.00 cm from the pivot. The gyroscope is precessing in a horizontal plane at the rate of one revolution in 2.20 s. (a) Find the upward force exerted by the pivot.
790
views
Textbook Question
A machine part has the shape of a solid uniform sphere of mass 225 g and diameter 3.00 cm. It is spinning about a frictionless axle through its center, but at one point on its equator it is scraping against metal, resulting in a friction force of 0.0200 N at that point. (b) How long will it take to decrease its rotational speed by 22.5 rad/s?
111
views