Ch 09: Rotation of Rigid Bodies
Chapter 9, Problem 9
A wagon wheel is constructed as shown in Fig. E9.33. The radius of the wheel is 0.300 m, and the rim has mass 1.40 kg. Each of the eight spokes that lie along a diameter and are 0.300 m long has mass 0.280 kg. What is the moment of inertia of the wheel about an axis through its center and perpendicular to the plane of the wheel? (Use Table 9.2.)
Verified Solution
Video duration:
6mThis video solution was recommended by our tutors as helpful for the problem above.
777
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A wheel is turning about an axis through its center with constant angular acceleration. Starting from rest, at t = 0, the wheel turns through 8.20 revolutions in 12.0 s. At t = 12.0 s the kinetic energy of the wheel is 36.0 J. For an axis through its center, what is the moment of inertia of the wheel?
1239
views
Textbook Question
Four small spheres, each of which you can regard as a point of mass 0.200 kg, are arranged in a square 0.400 m on a side and connected by extremely light rods (Fig. E9.28). Find the moment of inertia of the system about an axis (c) that passes through the centers of the upper left and lower right spheres and through point O.
1009
views
Textbook Question
A thin uniform rod of mass M and length L is bent at its center so that the two segments are now perpendicular to each other. Find its moment of inertia about an axis perpendicular to its plane and passing through (a) the point where the two segments meet
1010
views
Textbook Question
Compact Disc. A compact disc (CD) stores music in a coded pattern of tiny pits 10^-7 m deep. The pits are arranged in a track that spirals outward toward the rim of the disc; the inner and outer radii of this spiral are 25.0 mm and 58.0 mm, respectively. As the disc spins inside a CD player, the track is scanned at a constant linear speed of 1.25 m/s. (a) What is the angular speed of the CD when the innermost part of the track is scanned? The outermost part of the track?
317
views
Textbook Question
A wheel of diameter 40.0 cm starts from rest and rotates with a constant angular acceleration of 3.00 rad/s^2. Compute the radial acceleration of a point on the rim for the instant the wheel completes its second revolution from the relationship (b) a_rad = v^2/r
647
views
Textbook Question
A wheel of diameter 40.0 cm starts from rest and rotates with a constant angular acceleration of 3.00 rad/s^2. Compute the radial acceleration of a point on the rim for the instant the wheel completes its second revolution from the relationship (a) a_rad = ω^2r and (b) a_rad = v^2/r
503
views