Ch 05: Applying Newton's Laws
Chapter 5, Problem 5
A small car with mass 0.800 kg travels at constant speed on the inside of a track that is a vertical circle with radius 5.00 m (Fig. E5.45). If the normal force exerted by the track on the car when it is at the top of the track (point B) is 6.00 N, what is the normal force on the car when it is at the bottom of the track (point A)?
Verified Solution
Video duration:
2mThis video solution was recommended by our tutors as helpful for the problem above.
2570
views
1
comments
Was this helpful?
Video transcript
Related Practice
Textbook Question
A 52-kg ice skater spins about a vertical axis through her body with her arms horizontally outstretched; she makes 2.0 turns each second. The distance from one hand to the other is 1.50 m. Biometric measurements indicate that each hand typically makes up about 1.25% of body weight. (b) What horizontal force must her wrist exert on her hand?
1146
views
1
comments
Textbook Question
A small remote-controlled car with mass 1.60 kg moves at a constant speed of υ = 12.0 m/s in a track formed by a vertical circle inside a hollow metal cylinder that has a radius of 5.00 m (Fig. E5.45). What is the magnitude of the normal force exerted on the car by the walls of the cylinder at (a) point A (bottom of the track)
729
views
Textbook Question
A small remote-controlled car with mass 1.60 kg moves at a constant speed of υ = 12.0 m/s in a track formed by a vertical circle inside a hollow metal cylinder that has a radius of 5.00 m (Fig. E5.45). What is the magnitude of the normal force exerted on the car by the walls of the cylinder at (b) point B (top of the track)?
3005
views
1
rank
Textbook Question
The Cosmo Clock 21 Ferris wheel in Yokohama, Japan, has a diameter of 100 m. Its name comes from its 60 arms, each of which can function as a second hand (so that it makes one revolution every 60.0 s). (b) A passenger weighs 882 N at the weight-guessing booth on the ground. What is his apparent weight at the highest and at the lowest point on the Ferris wheel?
427
views
Textbook Question
The Cosmo Clock 21 Ferris wheel in Yokohama, Japan, has a diameter of 100 m. Its name comes from its 60 arms, each of which can function as a second hand (so that it makes one revolution every 60.0 s).(c) What would be the time for one revolution if the passenger's apparent weight at the highest point were zero?
469
views
Textbook Question
The Cosmo Clock 21 Ferris wheel in Yokohama, Japan, has a diameter of 100 m. Its name comes from its 60 arms, each of which can function as a second hand (so that it makes one revolution every 60.0 s). (d) What then would be the passenger's apparent weight at the lowest point?
497
views