Ch 03: Motion in Two or Three Dimensions
Chapter 3, Problem 3
An airplane pilot wishes to fly due west. A wind of 80.0 km/h (about 50 mi/h) is blowing toward the south. (a) If the airspeed of the plane (its speed in still air) is 320.0 km/h (about 200 mi/h), in which direction should the pilot head?
Verified Solution
Video duration:
1mThis video solution was recommended by our tutors as helpful for the problem above.
1770
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
The position of a squirrel running in a park is given by r = [(0.280 m/s)t + (0.0360 m/s2)t2]î + (0.0190 m/s3)t3ĵ. (a) What are υx(t) and υy(t), the x- and y-components of the velocity of the squirrel, as functions of time?
9
views
Textbook Question
The coordinates of a bird flying in the xy-plane are given by x(t) = αt and y(t) = 3.0 m − βt2, where α = 2.4 m/s and β = 1.2 m/s2. (b) Calculate the velocity and acceleration vectors of the bird as functions of time.
12
views
Textbook Question
The nose of an ultralight plane is pointed due south, and its airspeed indicator shows 35 m/s. The plane is in a 10–m/s wind blowing toward the southwest relative to the earth. (b) Let x be east and y be north, and find the components of υ→ P/E.
408
views
Textbook Question
A canoe has a velocity of 0.40 m/s southeast relative to the earth. The canoe is on a river that is flowing 0.50 m/s east relative to the earth. Find the velocity (magnitude and direction) of the canoe relative to the river.
2176
views
Textbook Question
A river flows due south with a speed of 2.0 m/s. You steer a motorboat across the river; your velocity relative to the water is 4.2 m/s due east. The river is 500 m wide. (a) What is your velocity (magnitude and direction) relative to the earth?
735
views
Textbook Question
A river flows due south with a speed of 2.0 m/s. You steer a motorboat across the river; your velocity relative to the water is 4.2 m/s due east. The river is 500 m wide. (b) How much time is required to cross the river?
638
views
1
rank