Ch 03: Motion in Two or Three Dimensions
Chapter 3, Problem 3
A model of a helicopter rotor has four blades, each 3.40 m long from the central shaft to the blade tip. The model is rotated in a wind tunnel at 550 rev/min. (b) What is the radial acceleration of the blade tip expressed as a multiple of g?
Verified Solution
Video duration:
3mThis video solution was recommended by our tutors as helpful for the problem above.
658
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
The earth has a radius of 6380 km and turns around once on its axis in 24 h. (a) What is the radial acceleration of an object at the earth's equator? Give your answer in m/s2 and as a fraction of g.
1664
views
Textbook Question
The earth has a radius of 6380 km and turns around once on its axis in 24 h. (b) If arad at the equator is greater than g, objects will fly off the earth's surface and into space. (We will see the reason for this in Chapter 5.) What would the period of the earth's rotation have to be for this to occur?
2928
views
Textbook Question
A model of a helicopter rotor has four blades, each 3.40 m long from the central shaft to the blade tip. The model is rotated in a wind tunnel at 550 rev/min. (a) What is the linear speed of the blade tip, in m/s?
2343
views
Textbook Question
At its Ames Research Center, NASA uses its large '20-G' centrifuge to test the effects of very large accelerations ('hypergravity') on test pilots and astronauts. In this device, an arm 8.84 m long rotates about one end in a horizontal plane, and an astronaut is strapped in at the other end. Suppose that he is aligned along the centrifuge's arm with his head at the outermost end. The maximum sustained acceleration to which humans are subjected in this device is typically 12.5g. (a) How fast must the astronaut's head be moving to experience this maximum acceleration?
906
views
Textbook Question
The coordinates of a bird flying in the xy-plane are given by x(t) = αt and y(t) = 3.0 m − βt2, where α = 2.4 m/s and β = 1.2 m/s2. (c) Calculate the magnitude and direction of the bird's velocity and acceleration at t = 2.0 s.
2655
views
2
rank
Textbook Question
A remote-controlled car is moving in a vacant parking lot. The velocity of the car as a function of time is given by v = [5.00 m/s − (0.0180 m/s3)t2]î + [2.00 m/s + (0.550 m/s2)t]ĵ. (b) What are the magnitude and direction of the car's velocity at t = 8.00 s? (b) What are the magnitude and direction of the car's acceleration at t = 8.00 s?
1657
views