Ch 02: Motion Along a Straight Line
Chapter 2, Problem 2
A hot-air balloonist, rising vertically with a constant velocity of magnitude 5.00 m/s, releases a sandbag at an instant when the balloon is 40.0 m above the ground (Fig. E2.44). After the sandbag is released, it is in free fall. (d) What is the greatest height above the ground that the sandbag reaches?
Verified Solution
Video duration:
4mThis video solution was recommended by our tutors as helpful for the problem above.
433
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
You throw a glob of putty straight up toward the ceiling, which is 3.60 m above the point where the putty leaves your hand. The initial speed of the putty as it leaves your hand is 9.50 m/s. (a) What is the speed of the putty just before it strikes the ceiling?
472
views
Textbook Question
A lunar lander is making its descent to Moon Base I (Fig. E2.40). The lander descends slowly under the retro-thrust of its descent engine. The engine is cut off when the lander is 5.0 m above the surface and has a downward speed of 0.8 m/s.With the engine off, the lander is in free fall. What is the speed of the lander just before it touches the surface? The acceleration due to gravity on the moon is 1.6 m/s
1029
views
Textbook Question
A hot-air balloonist, rising vertically with a constant velocity of magnitude 5.00 m/s, releases a sandbag at an instant when the balloon is 40.0 m above the ground (Fig. E2.44). After the sandbag is released, it is in free fall. (a) Compute the position and velocity of the sandbag at 0.250 s and 1.00 s after its release.
1543
views
1
rank
Textbook Question
A small rocket burns 0.0500 kg of fuel per second, ejecting it as a gas with a velocity relative to the rocket of magnitude 1600 m/s. (b) Would the rocket operate in outer space where there is no atmosphere? If so, how would you steer it? Could you brake it?
413
views
Textbook Question
A small rocket burns 0.0500 kg of fuel per second, ejecting it as a gas with a velocity relative to the rocket of magnitude 1600 m/s. (a) What is the thrust of the rocket?
793
views