Ch 01: Units, Physical Quantities & Vectors
All textbooksYoung & Freedman Calc 14th EditionCh 01: Units, Physical Quantities & VectorsProblem 37
Chapter 1, Problem 37
Relativistic Baseball. Calculate the magnitude of the force required to give a 0.145-kg baseball an acceleration a = 1.00 m/s2 in the direction of the baseball's initial velocity when this velocity has a magnitude of (a) 10.0 m/s; (b) 0.900c; (c) 0.990c.
Verified Solution
Video duration:
10mThis video solution was recommended by our tutors as helpful for the problem above.
345
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
The positive muon (µ+), an unstable particle, lives on average 2.20 * 10^-6 s (measured in its own frame of reference) before decaying. (a) If such a particle is moving, with respect to the laboratory, with a speed of 0.900c, what average lifetime is measured in the laboratory?
486
views
Textbook Question
The positive muon (µ+), an unstable particle, lives on average 2.20 * 10^-6 s (measured in its own frame of reference) before decaying. (b) What average distance, measured in the laboratory, does the particle move before decaying?
392
views
Textbook Question
An alien spacecraft is flying overhead at a great distance as you stand in your backyard. You see its searchlight blink on for 0.150 s. The first officer on the spacecraft measures that the searchlight is on for 12.0 ms. (a) Which of these two measured times is the proper time? (b) What is the speed of the spacecraft relative to the earth, expressed as a fraction of the speed of light c?
446
views
Textbook Question
A proton (rest mass 1.67 * 10-27 kg) has total energy that is 4.00 times its rest energy. What are (a) the kinetic energy of the proton; (b) the magnitude of the momentum of the proton; (c) the speed of the proton?
1147
views
Textbook Question
Electrons are accelerated through a potential difference of 750 kV, so that their kinetic energy is 7.50 * 105 eV. (a) What is the ratio of the speed v of an electron having this energy to the speed of light, c? (b) What would the speed be if it were computed from the principles of classical mechanics?
625
views
Textbook Question
Compute the kinetic energy of a proton (mass 1.67 * 10-27 kg) using both the nonrelativistic and relativistic expressions, and compute the ratio of the two results (relativistic divided by nonrelativistic) for speeds of (a) 8.00 * 107 m/s and (b) 2.85 * 108 m/s.
469
views