Ch 01: Units, Physical Quantities & Vectors
All textbooksYoung & Freedman Calc 14th EditionCh 01: Units, Physical Quantities & VectorsProblem 37
Chapter 1, Problem 37
A proton (rest mass 1.67 * 10-27 kg) has total energy that is 4.00 times its rest energy. What are (a) the kinetic energy of the proton; (b) the magnitude of the momentum of the proton; (c) the speed of the proton?
Verified Solution
Video duration:
12mThis video solution was recommended by our tutors as helpful for the problem above.
1147
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
The positive muon (µ+), an unstable particle, lives on average 2.20 * 10^-6 s (measured in its own frame of reference) before decaying. (b) What average distance, measured in the laboratory, does the particle move before decaying?
392
views
Textbook Question
An alien spacecraft is flying overhead at a great distance as you stand in your backyard. You see its searchlight blink on for 0.150 s. The first officer on the spacecraft measures that the searchlight is on for 12.0 ms. (a) Which of these two measured times is the proper time? (b) What is the speed of the spacecraft relative to the earth, expressed as a fraction of the speed of light c?
446
views
Textbook Question
Relativistic Baseball. Calculate the magnitude of the force required to give a 0.145-kg baseball an acceleration a = 1.00 m/s2 in the direction of the baseball's initial velocity when this velocity has a magnitude of (a) 10.0 m/s; (b) 0.900c; (c) 0.990c.
345
views
Textbook Question
Electrons are accelerated through a potential difference of 750 kV, so that their kinetic energy is 7.50 * 105 eV. (a) What is the ratio of the speed v of an electron having this energy to the speed of light, c? (b) What would the speed be if it were computed from the principles of classical mechanics?
625
views
Textbook Question
Compute the kinetic energy of a proton (mass 1.67 * 10-27 kg) using both the nonrelativistic and relativistic expressions, and compute the ratio of the two results (relativistic divided by nonrelativistic) for speeds of (a) 8.00 * 107 m/s and (b) 2.85 * 108 m/s.
469
views
Textbook Question
Why Are We Bombarded by Muons? Muons are unstable subatomic particles that decay to electrons with a mean lifetime of 2.2 ms. They are produced when cosmic rays bombard the upper atmosphere about 10 km above the earth's surface, and they travel very close to the speed of light. The problem we want to address is why we see any of them at the earth's surface. (a) What is the greatest distance a muon could travel during its 2.2@ms lifetime? (b) According to your answer in part (a), it would seem that muons could never make it to the ground. But the 2.2@ms lifetime is measured in the frame of the muon, and muons are moving very fast. At a speed of 0.999c, what is the mean lifetime of a muon as measured by an observer at rest on the earth? How far would the muon travel in this time? Does this result explain why we find muons in cosmic rays? (c) From the point of view of the muon, it still lives for only 2.2 ms, so how does it make it to the ground? What is the thickness of the 10 km of atmosphere through which the muon must travel, as measured by the muon? Is it now clear how the muon is able to reach the ground?
637
views