Skip to main content
Ch 19: Work, Heat, and the First Law of Thermodynamics
Chapter 19, Problem 19

512 g of an unknown metal at a temperature of 15°C is dropped into a 100 g aluminum container holding 325 g of water at 98°C. A short time later, the container of water and metal stabilizes at a new temperature of 78°C. Identify the metal.

Verified Solution

Video duration:
5m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Specific Heat Capacity

Specific heat capacity is the amount of heat required to raise the temperature of a unit mass of a substance by one degree Celsius. It is a crucial property in thermal energy calculations, as different materials absorb and release heat at different rates. Understanding specific heat allows us to analyze how substances interact thermally, particularly in heat transfer scenarios.
Recommended video:
Guided course
06:50
Specific Heat & Temperature Changes

Heat Transfer

Heat transfer refers to the movement of thermal energy from one object or substance to another due to a temperature difference. In this scenario, heat flows from the hot water and aluminum container to the cooler metal until thermal equilibrium is reached. This concept is essential for solving problems involving temperature changes and energy conservation.
Recommended video:
Guided course
05:14
Overview of Heat Transfer

Thermal Equilibrium

Thermal equilibrium occurs when two or more objects in thermal contact reach the same temperature, resulting in no net heat flow between them. In the given problem, the metal, water, and aluminum container reach a common final temperature of 78°C. This principle is fundamental in determining the final state of a system after heat exchange.
Recommended video:
Guided course
05:21
Volume Thermal Expansion
Related Practice
Textbook Question
The ends of a 20-cm-long, 2.0-cm-diameter rod are maintained at 0°C and 100°C by immersion in an ice-water bath and boiling water. Heat is conducted through the rod at 4.5×10^4 J per hour. Of what material is the rod made?
533
views
Textbook Question
You are boiling pasta and absentmindedly grab a copper stirring spoon rather than your wooden spoon. The copper spoon has a 20 mm ×1.5 mm rectangular cross section, and the distance from the boiling water to your 35°C hand is 18 cm. How long does it take the spoon to transfer 25 J of energy to your hand?

356
views
Textbook Question
30 g of copper pellets are removed from a 300°C oven and immediately dropped into 100 mL of water at 20°C in an insulated cup. What will the new water temperature be?
536
views
Textbook Question
The beaker in FIGURE P19.45, with a thin metal bottom, is filled with 20 g of water at 20°C. It is brought into good thermal contact with a 4000 cm^3 container holding 0.40 mol of a monatomic gas at 10 atm pressure. Both containers are well insulated from their surroundings. What is the gas pressure after a long time has elapsed? You can assume that the containers themselves are nearly massless and do not affect the outcome.
337
views
Textbook Question
A typical nuclear reactor generates 1000 MW (1000 MJ/s) of electric energy. In doing so, it produces 2000 MW of 'waste heat' that must be removed from the reactor to keep it from melting down. Many reactors are sited next to large bodies of water so that they can use the water for cooling. Consider a reactor where the intake water is at 18°C. State regulations limit the temperature of the output water to 30°C so as not to harm aquatic organisms. How many liters of cooling water have to be pumped through the reactor each minute?
696
views
Textbook Question
Liquid helium, with a boiling point of 4.2 K, is used in ultralow-temperature experiments and also for cooling the superconducting magnets used in MRI imaging in medicine. Storing liquid helium so far below room temperature is a challenge because even a small 'heat leak' will boil the helium away. A standard helium dewar, shown in FIGURE P19.67, has an inner stainless-steel cylinder filled with liquid helium surrounded by an outer cylindrical shell filled with liquid nitrogen at –196°C. The space between is a vacuum. The small structural supports have very low thermal conductivity, so you can assume that radiation is the only heat transfer between the helium and its surroundings. Suppose the helium cylinder is 16 cm in diameter and 30 cm tall and that all walls have an emissivity of 0.25. The density of liquid helium is 125 kg/m^3 and its heat of vaporization is 2.1×10^4 J/kg. a. What is the mass of helium in the filled cylinder?
702
views
1
rank