Ch 12: Rotation of a Rigid Body
Chapter 12, Problem 12
Determine the moment of inertia about the axis of the object shown in FIGURE P12.52.
Verified Solution
Video duration:
9mThis video solution was recommended by our tutors as helpful for the problem above.
450
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
FIGURE P12.82 shows a cube of mass m sliding without friction at speed v₀. It undergoes a perfectly elastic collision with the bottom tip of a rod of length d and mass M = 2m. The rod is pivoted about a frictionless axle through its center, and initially it hangs straight down and is at rest. What is the cube's velocity—both speed and direction—after the collision?
338
views
Textbook Question
During most of its lifetime, a star maintains an equilibrium size in which the inward force of gravity on each atom is balanced by an outward pressure force due to the heat of the nuclear reactions in the core. But after all the hydrogen 'fuel' is consumed by nuclear fusion, the pressure force drops and the star undergoes a gravitational collapse until it becomes a neutron star. In a neutron star, the electrons and protons of the atoms are squeezed together by gravity until they fuse into neutrons. Neutron stars spin very rapidly and emit intense pulses of radio and light waves, one pulse per rotation. These 'pulsing stars' were discovered in the 1960s and are called pulsars.
a. A star with the mass (M = 2.0 X 10^30 kg) and size (R = 7.0 x 10^8 m) of our sun rotates once every 30 days. After undergoing gravitational collapse, the star forms a pulsar that is observed by astronomers to emit radio pulses every 0.10 s. By treating the neutron star as a solid sphere, deduce its radius.
254
views
Textbook Question
The bunchberry flower has the fastest-moving parts ever observed in a plant. Initially, the stamens are held by the petals in a bent position, storing elastic energy like a coiled spring. When the petals release, the tips of the stamen act like medieval catapults, flipping through a 60° angle in just .30 ms to launch pollen from anther sacs at their ends. The human eye just sees a burst of pollen; only high-speed photography reveals the details. As FIGURE CP12.91 shows, we can model the stamen tip as a 1.0-mm-long, 10 μg rigid rod with a 10 μg anther sac at the end. Although oversimplifying, we'll assume a constant angular acceleration.
b. What is the speed of the anther sac as it releases its pollen?
372
views
Textbook Question
A rod of length L and mass M has a nonuniform mass distribution. The linear mass density (mass per length) is λ = cx^2 , where x is measured from the center of the rod and c is a constant.
b. Find an expression for c in terms of L and M.
318
views
Textbook Question
The two blocks in FIGURE CP12.86 are connected by a massless rope that passes over a pulley. The pulley is 12 cm in diameter and has a mass of 2.0 kg. As the pulley turns, friction at the axle exerts a torque of magnitude 0.50 N m. If the blocks are released from rest, how long does it take the 4.0 kg block to reach the floor?
482
views
3
rank
Textbook Question
A 25 kg solid door is 220 cm tall, 91 cm wide. What is the door’s moment of inertia for (b) rotation about a vertical axis inside the door, 15 cm from one edge?
113
views