Ch 10: Interactions and Potential Energy
Chapter 10, Problem 10
CALC The potential energy for a particle that can move along the x -axis is U=Ax²+B sin(πx/L) , where A , B , and L are constants. What is the force on the particle at (a) x=0 , (b) x=L/2 , and (c) x=L?
Verified Solution
Video duration:
0m:0sThis video solution was recommended by our tutors as helpful for the problem above.
276
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
You have been hired to design a spring-launched roller coaster that will carry two passengers per car. The car goes up a 10-m-high hill, then descends 15 m to the track's lowest point. You've determined that the spring can be compressed a maximum of 2.0 m and that a loaded car will have a maximum mass of 400 kg. For safety reasons, the spring constant should be 10% larger than the minimum needed for the car to just make it over the top.
What is the maximum speed of a 350 kg car if the spring is compressed the full amount?
852
views
Textbook Question
FIGURE 10.23 showed the potential-energy curve for the O2 molecule. Consider a molecule with the energy E1 shown in the figure.
a. What is the maximum speed of an oxygen atom as it oscillates back and forth? Don't forget that the kinetic energy is the total kinetic energy of the system. The mass of an oxygen atom is 16 u, where 1 u=1 atomic mass unit =1.66×10(to the poer of)−27 kg .
909
views
Textbook Question
A 1.0 kg mass that can move along the x -axis experiences the potential energy U=(x²−x) J, where x is in m. The mass has velocity v𝓍=3.0 m/s at position x=1.0 m . At what position has it slowed to 1.0 m/s?
392
views
Textbook Question
In a physics lab experiment, a compressed spring launches a 20 g metal ball at a 30° angle. Compressing the spring 20 cm causes the ball to hit the floor 1.5 m below the point at which it leaves the spring after traveling 5.0 m horizontally. What is the spring constant?
259
views
Textbook Question
In FIGURE EX10.27, what is the maximum speed of a 2.0 g particle that oscillates between x = 2.0mm and x = 8.0 mm
506
views
Textbook Question
The spring in FIGURE EX10.21a is compressed by 10 cm. It launches a block across a frictionless surface at 0.50 m/s. The two springs in Figure EX10.21b are identical to the spring of Figure EX10.21a. They are compressed by the same 10 cm and launch the same block. What is the block's speed now?
556
views