Ch 08: Dynamics II: Motion in a Plane
Chapter 8, Problem 8
The physics of circular motion sets an upper limit to the speed of human walking. (If you need to go faster, your gait changes from a walk to a run.) If you take a few steps and watch what's happening, you'll see that your body pivots in circular motion over your forward foot as you bring your rear foot forward for the next step. As you do so, the normal force of the ground on your foot decreases and your body tries to 'lift off' from the ground. a. A person's center of mass is very near the hips, at the top of the legs. Model a person as a particle of mass m at the top of a leg of length L. Find an expression for the person's maximum walking speed vₘₐₓ.
Verified Solution
Video duration:
5mThis video solution was recommended by our tutors as helpful for the problem above.
387
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A heavy ball with a weight of 100 N (m = 10.2 kg) is hung from the ceiling of a lecture hall on a 4.5-m-long rope. The ball is pulled to one side and released to swing as a pendulum, reaching a speed of 5.5 m/s as it passes through the lowest point. What is the tension in the rope at that point?
361
views
Textbook Question
In an amusement park ride called The Roundup, passengers stand inside a 16-m-diameter rotating ring. After the ring has acquired sufficient speed, it tilts into a vertical plane, as shown in
FIGURE P8.51. b. What is the longest rotation period of the wheel that will prevent the riders from falling off at the top?
951
views
Textbook Question
Suppose you swing a ball of mass m in a vertical circle on a string of length L. As you probably know from experience, there is a minimum angular velocity ωₘᵢₙ you must maintain if you want the ball to complete the full circle without the string going slack at the top. a. Find an expression for ωₘᵢₙ.
553
views
Textbook Question
A 1500 kg car takes a 50-m-radius unbanked curve at 15 m/s. What is the size of the friction force on the car?
482
views
Textbook Question
A car can just barely turn a corner on an unbanked road at 45 km/h on a dry sunny day. What is the car's maximum cornering speed on a rainy day when the coefficient of static friction has been reduced by 50%?
1162
views
3
rank
Textbook Question
If a vertical cylinder of water (or any other liquid) rotates about its axis, as shown in
FIGURE CP8.72, the surface forms a smooth curve. Assuming that the water rotates as a unit (i.e., all the water rotates with the same angular velocity), show that the shape of the surface is a parabola described by the equation z = (ω^2 / 2g) r^2. Hint: Each particle of water on the surface is subject to only two forces: gravity and the normal force due to the water underneath it. The normal force, as always, acts perpendicular to the surface.
428
views