Ch 07: Newton's Third Law
Chapter 7, Problem 7
FIGURE P7.47 shows a 200 g hamster sitting on an 800 g wedge-shaped block. The block, in turn, rests on a spring scale. An extra-fine lubricating oil having μₛ = μₖ = 0 is sprayed on the top surface of the block, causing the hamster to slide down. Friction between the block and the scale is large enough that the block does not slip on the scale. What does the scale read, in grams, as the hamster slides down?
Verified Solution
Video duration:
10mThis video solution was recommended by our tutors as helpful for the problem above.
438
views
1
rank
Was this helpful?
Video transcript
Related Practice
Textbook Question
FIGURE EX7.17 shows two 1.0 kg blocks connected by a rope. A second rope hangs beneath the lower block. Both ropes have a mass of 250 g. The entire assembly is accelerated upward at 3.0 m/s^2 by force F. (b) What is the tension at the top end of rope 1?
1053
views
Textbook Question
A 500 kg air conditioner sits on the flat roof of a building. The coefficient of static friction between the roof and the air conditioner is 0.90. A massless rope attached to the air conditioner passes over a massless, frictionless pulley at the edge of the roof. In an effort to drag the air conditioner to the edge of the roof, four 100 kg students hang from the free end of the rope, but the air conditioner refuses to budge. What is the magnitude of the rope tension at the point where it is attached to the air conditioner?
653
views
Textbook Question
The 1.0 kg physics book in FIGURE P7.40 is connected by a string to a 500 g coffee cup. The book is given a push up the slope and released with a speed of 3.0 m/s. The coefficients of friction are μₛ = 0.50 and μₖ = 0.20.
b. At the highest point, does the book stick to the slope, or does it slide back down?
819
views
1
comments
Textbook Question
In FIGURE CP7.54, find an expression for the acceleration of m₁. The pulleys are massless and frictionless.
Hint: Think carefully about the acceleration constraint.
1000
views
Textbook Question
What is the acceleration of the 3.0 kg block in FIGURE CP7.55 across the frictionless table?
Hint: Think carefully about the acceleration constraint.
551
views
Textbook Question
A motorcycle daredevil plans to ride up a 2.0-m-high, 20° ramp, sail across a 10-m-wide pool filled with hungry crocodiles, and land at ground level on the other side. He has done this stunt many times and approaches it with confidence. Unfortunately, the motorcycle engine dies just as he starts up the ramp. He is going 11 m/s at that instant, and the rolling friction of his rubber tires (coefficient 0.02) is not negligible. Does he survive, or does he become crocodile food? Justify your answer by calculating the distance he travels through the air after leaving the end of the ramp.
336
views