Ch 04: Kinematics in Two Dimensions
Chapter 4, Problem 8
Suppose the moon were held in its orbit not by gravity but by a massless cable attached to the center of the earth. What would be the tension in the cable? Use the table of astronomical data inside the back cover of the book.
Verified Solution
Video duration:
3mThis video solution was recommended by our tutors as helpful for the problem above.
487
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
You are driving your 1800 kg car at 25 m/s over a circular hill that has a radius of 150 m. A deer running across the road causes you to hit the brakes hard while right at the summit of the hill, and you start to skid. The coefficient of kinetic friction between your tires and the road is 0.75. What is the magnitude of your acceleration as you begin to slow?
1576
views
Textbook Question
A 200 g block on a 50-cm-long string swings in a circle on a horizontal, frictionless table at 75 rpm. (a) What is the speed of the block?
489
views
Textbook Question
A 200 g block on a 50-cm-long string swings in a circle on a horizontal, frictionless table at 75 rpm. (b) What is the tension in the string?
622
views
Textbook Question
FIGURE P8.54 shows two small 1.0 kg masses connected by massless but rigid 1.0-m-long rods. What is the tension in the rod that connects to the pivot if the masses rotate at 30 rpm in a horizontal circle?
1229
views
Textbook Question
It is proposed that future space stations create an artificial gravity by rotating. Suppose a space station is constructed as a 1000-m-diameter cylinder that rotates about its axis. The inside surface is the deck of the space station. What rotation period will provide 'normal' gravity?
1371
views
Textbook Question
A 4.0 x 10^10 kg asteroid is heading directly toward the center of the earth at a steady 20 km/s. To save the planet, astronauts strap a giant rocket to the asteroid perpendicular to its direction of travel. The rocket generates 5.0 x 10^9 N of thrust. The rocket is fired when the asteroid is 4.0 x 10^6 km away from earth. You can ignore the earth's gravitational force on the asteroid and their rotation about the sun.(b) The radius of the earth is 6400 km. By what minimum angle must the asteroid be deflected to just miss the earth?
398
views
1
rank