Hey, guys. So let's get started with this problem here. Hopefully, you took a shot at it on your own. It's a little tricky to kind of understand the language of this problem and I think this really benefits from a drawing. So let's get started here. We have some steel measuring tape and it's calibrated for measurement accuracy at 20 degrees Celsius. What does that mean? I like drawing stuff out. Basically, what it just means is that if you have a ruler, if you were to be at 20 degrees Celsius, the markings on the ruler would show 50.000 meters. Right? So you measure this thing out. I'm going to call this lruler. The measurements on the marking would be 50.00 meters. And if you were to actually take a different measurement instrument like a laser pointer or something and you were to measure a line, then that would also be exactly 50.000 meters. Basically, the measurement that it's showing you is exactly equal to the real-life measurement of 50.00 meters. That's what it means to be calibrated at a certain temperature. Then what happens is that your measuring tape is going to increase; you're going to sort of increase the temperature to 40 degrees Celsius. Right? So when I copy and paste this, so then at 40 degrees Celsius what happens? Well, the actual distance of 50.00 meters doesn't change. Right? If you were to measure with a laser pointer or something like that, it would still be the same, but what happens is the steel ruler has increased its length a little bit. Right? It's made of steel; it expands a little bit like this. Now what happens is the measurements, the markings on the ruler don't change so they'll still show exactly 50.00 meters at this distance here but the real measurement won't be 50.00 meters anymore. This is point 50.000. The actual measurements will actually be this line over here. That's really what we're trying to find here. So this is what the actual distance is and that's what we're trying to find. Alright? So the distance on the ruler is still going to be 50.000 but the lactual is what we're trying to find. Alright. So that's kind of what's going on in this problem. Hopefully that kind of makes sense. Now which equation are we going to use? Well, basically what happens is that this lruler is kind of like our length initial. Right? So this is kind of like our lnaught and this lactual is really kind of like our lfinal. Right? So we have some initial distance, it expands to some final distance, and this is what we're trying to find. So because of that, we're actually going to use this second equation over here. Right? So this guy. So we're going to have Lf=Lnots1+αdeltat. Alright? So basically, this is lactual equals lruler and then one plus alpha times delta t. Alright? So all you have to do here is just go ahead and plug and chug. So we've got lactual equals, this is going to be lruler which is going to be 50.000 times 1 plus then we've got 1.2 times 10 to the minus 5. That's the linear expansion coefficient for steel which is given to us, and then we have to figure out the delta T, right, the change in temperature. Now remember delta T can be in Celsius or Kelvin. It doesn't matter which one you use. So basically, the difference between 20 and 40 Celsius, this delta T here is just 20. Right? That's so you can plug in. So we've got 20 like this. So when you plug all of this in what you should get is you should get 50.012 meters. So what happens here is that at a higher temperature of 40 degrees Celsius, even though your ruler will say 50.000, the actual distance that it's measuring is going to be the length of this line which is 50.012. So your ruler is going to be inaccurate because it's calibrated for a certain temperature. That's kind of what's going on in this problem. Hopefully, that makes sense and let me know if you have any questions.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 26m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics4h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
20. Heat and Temperature
Linear Thermal Expansion
Struggling with Physics?
Join thousands of students who trust us to help them ace their exams!Watch the first videoVideo duration:
3mPlay a video:
Related Videos
Related Practice
Linear Thermal Expansion practice set
